Смекни!
smekni.com

работа По Общей Химической Технологии на тему: «Производство строительного кирпича» (стр. 4 из 8)

Длительность процесса формования, от водозатворения до резки бруса, составляет всего около 2 минут, в то время как процесс замокания и набухания даже хорошо проработанных глин требует для своего завершения несколько часов, а для высокопластичных глин и нескольких суток. Поэтому быстротечное водозатворение плохо проработанных сухих глин неизбежно приводит к неравномерному их замачиванию и набуханию, а следовательно, и к различному напряженно-деформированному состоянию, которое способствует разрывам изделия даже при нормальном режиме сушки.

Глина из-под бегунов проходит одну или две пары гладких вальцов и поступает в кирпичный ленточный пресс, который соединяют с резательным аппаратом. Проволока резательного автомата отрезает кирпич от глиняной ленты и мгновенно отходит обратно. Отрезанный кирпич попадает ( на ребро ) на подкладочные деревянные рамы, движущиеся на 2-3 см. ниже глиняной ленты. Так как скорость движения рам несколько больше, чем глиняной ленты, то между отрезанными кирпичами образуются промежутки, необходимые при последующей сушке. После расфасовки по рамам, сырец подаётся в сушильную камеру. По заполнении камера плотно запирается и обогревается.

Сушка сырца.

Под сушкой в обычном смысле понимают удаление излишней влаги из какого-либо переувлажненного вещества. В процессе сушки вода переходит из капиллярного или гигроскопического состояния в парообразное. При этом испарение происходит при условии, когда парциальное давление или концентрация водяных паров в окружающей среде меньше давления водяных паров у поверхности высушиваемого тела. И чем больше эта разница давлений, тем интенсивнее идет сушка.

Сушка кирпича производится в сушилах следующих типов с естественной сушкой, с искусственной и комбинированной. Естественные способы применяются главным образом, при небольшой производительности завода. Естественная сушка довольно продолжительна и при большом объёме производства не вполне рентабельна, так как требуется много складского пространства и успех работы в значительной степени зависит от погоды. Для искусственной сушки применяют тепло отработанного пара, остывающего обожженного кирпича, а в некоторых случаях тепло дымовых газов. Нагретый воздух ( 350-400 С ) отсасывается из обжиговой печи эксгаустром и подаётся в сушильную камеру. Благодаря постепенному подъёму температуры, в закрытой сушильной камере с течением времени образуются испарения воды без заметного движения воздуха. Это весьма благоприятно влияет на сушку кирпича, особенно из чувствительных к режиму сушки глин в первый период. Сырец нагревается во влажном воздухе и преждевременного высыхания его поверхности не происходит, а влага равномерно испаряется из всей массы сырца. Для обеспечения равномерности тяги и работы в печи устанавливают вентиляторы. Газы продуктов горения используются для сушки сравнительно реже, т.к. они действуют разрушающим образом на дерево и железо. Их следует пропускать по трубам или каналам под полом сушилки.

При сушке в поверхностных и внутренних слоях сырца возникает значительная разность влажностей и температур, напряжений и деформаций. В процессе сушки, как правило, происходит большее сокращение объема верхних слоев, чем внутренних, что нередко приводит к растрескиванию образца при достижении им критического значения объемно- напряженного состояния.

Таким критическим значением является влажность, соответствующая нижнему пределу пластичности, т.е. та точка, где глинистая масса при ее сушке переходит из пластичного состояния в непластичное и где коэффициент консистенции = 0. Пока глинистая масса сохраняет пластичное состояние, трещины не могут образоваться, поскольку растягивающие усилия компенсируются пластическими деформациями. Но как только образец потерял пластичность и начал переходить из пластичного в непластичное состояние, так при жестких режимах сушки в нем будут возникать предельные напряжения и начнут появляться трещины.

В связи с этим в первый период сушки кирпича (и особенно при высокой температуре и сильной циркуляции теплоносителя) главная задача заключается в том, чтобы затормозить испарения влаги с поверхности, не допустить резкой неравномерности воздушной усадки. Поверхностное испарение влаги должно быть таким, чтобы оно не приводило к критической разности напряжений и к деформациям изделий.

Важнейшим показателем сушильных свойств глинистых масс является влагопроводимость, которая зависит как от их температуры и влажности, так и от пластичности и гранулометрического состава. Чем выше коэффициент влагопроводности, тем быстрей идет сушка, значительно снижается величина напряжения и меньше появляется трещин.

Влага из внутренних областей изделий к поверхности перемещается по капиллярам и сообщающимся порам. Естественно, чем больше пор и чем они крупнее, тем выше влагопроводность, тем интенсивней и равномерней сушатся изделия.

Скорость сушки глинистых изделий зависит также от величины β- обратной удельной поверхности изделия, которую вычисляют как отношение объема изделия V к его поверхности S.

Скорость сушки определяется также объемом и геометрической формой изделия. Чем больше сумма площадей и меньше линейного усадка, тем быстрее идет его сушка.

В зависимости от динамики усадки изделия процесс сушки обычно делят на 3 периода:

1) период усадки. При этом считают, что усадка пропорциональна количеству испарившейся воды;

2) период замедленной усадке при продолжающемся интенсивном испарении воды. Обычно этот период характеризуют как переходный от выделения усадочной к выделению паровой воды;

3) Характеризуется воды пор.

Чем выше пластичность глинистой массы, тем выше ее оптимальная формовочная влажность и содержание поровой и усадочной воды. Высокопластичных глинистые массы содержат воды более 20% поровой и более 10% усадочной.

Особый интерес представляет первый период сушки, т.е. период испарения усадочной воды и интенсивной усадки, поскольку именно в этот период наблюдаются случаи растрескивания и коробление глинистых образцов. И особенно часто такие случаи наблюдаются у образцов, имеющих высокую пластичность и большое количество усадочной воды. Именно поэтому первый период сушки нуждается в строгом соблюдении режима сушки.

Основным фактором, оказывающим решающее влияние на процессы сушки сырца, являются внешними и внутренними. К числу внешних можно отнести скорость, влажность и темп теплоносителя, к внутренним – пластичность и гранулометрический состав, пористость и капиллярность глиняной породы, наличие выгорающих добавок, однородность структуры и влажности, оптимальность и равномерность увлажнения, пустотность изделия, вакумирование и паропрогрев, роль которых в процессе сушки очень велика. Вакуумирование снижает формовочную влажность, а следовательно, и величину усадки, вследствие чего сокращается первый период сушки, а паропрогрев обеспечивает повышение температуры во внутренних областях изделий, более равномерно распределяет температуру и влагу в глинистой массе, улучшая не только сушильные, но и формовочные свойства. Однако среди перечисленных факторов немалую роль играют и другие внутренние факторы, которые не только ускоряют сушку сырца, но и улучшают его обжиг и повышают марку изделий. Чем лучше подготовлена и обработана глинистая масса, чем оптимальнее ее пластичность, пористость и влажность, чем более однородна и равномерно она увлажнена, тем равномерней и быстрей будет протекать сушка сырца.

Применение внешних ускорителей в полной мере возможно лишь во второй период сушки, после полного окончания усадки, при достижении сырцом влажности, соответствующей пределу усадки. Это становится возможным потому, что сырец в этот период не претерпевает более усадки, испарение влаги полностью сопровождается образованием пор. Следовательно, для соблюдения нормального режима сушки сырца, регулирования и правильного применения ускорителей при данной температуре, влажности и скорости движения воздуха необходимо прежде всего знание пластичности, формовочной влажности и влажности при пределе усадки сырца.

Основными факторами, приводящими к разным скоростям сушки образцов, является их пористость, структура и капиллярность, которые регулируются крупнозернистыми добавками. В пользу решающей роли отощающих добавок, создающих в глинистой массе нормальную пористость и капиллярность, говорит многовековая практика производства кирпича в России. Еще на заре производства кирпича русские мастера умели делать хороший высококачественный кирпич. Я.Н. Черняк приводит такой отзыв иностранцев о качестве русского кирпича XV-XVI вв.: «приготовленный в России кирпич очень хорош, гладок, по твердости, весу и красоте похож на лучший антиохийский. При изготовлении его русские мастера подбавляют как можно больше песку и приобрели в этом большое уменье».

Именно из такого кирпича построены Московский Кремль (1485-1495 гг.), Покровский собор, или собор Василия Блаженного (1555-1560 гг.) и много других замечательных сооружений как в Москве, так и в других городах России, являющихся ныне величайшими памятниками русской и мировой архитектуры. В далекую старину мастера кирпичного дела не знали органических (выгорающих) добавок. Они пользовались исключительно минеральными добавками и главным образом песком.

Кроме перечисленных возможностей ускорения сушки сырца, большую роль играет также способ его укладки. Наибольшую эффективность дает укладка сырца на ложок с таким расчетом, чтобы две его постели свободно омывались воздухом (теплоносителем).