Смекни!
smekni.com

Учебно-методическое пособие Рекомендовано методической комиссией финансового факультета для студентов высших учебных заведений экономических специальностей Нижний Новгород (стр. 15 из 28)

4. Линейный коэффициент корреляции применяется в случае линейной зависимости между двумя количественными признаками x и y. В отличие от КФ в линейном коэффициенте корреляции учитываются не только знаки отклонений от средних величин, но и значения самих отклонений, выраженные для сопоставимости в единицах среднего квадратического отклонения t:

и
.

Линейный коэффициент корреляции r представляет собой среднюю величину из произведений нормированных отклонений для x и у:

, (83) или
. (84)

Числитель формулы (84), деленный на n, т.е.

, представляет собой среднее произведение отклонений значений двух признаков от их средних значений, именуемое ковариацией. Поэтому можно сказать, что линейный коэффициент корреляции представляет собой частное от деления ковариации между х и у на произведение их средних квадратических отклонений. Путем несложных математических преобразований можно получить и другие модификации формулы линейного коэффициента корреляции, например:

. (85)

Линейный коэффициент корреляции может принимать значения от –1 до +1, причем знак определяется в ходе решения. Например, если

, то r по формуле (85) будет положительным, что характеризует прямую зависимость между х и у, в противном случае (r<0) – обратную связь. Если
, то r=0, что означает отсутствие линейной зависимости между х и у, а при r=1 – функциональная зависимость между х и у. Следовательно, всякое промежуточное значение r от 0 до 1 характеризует степень приближения корреляционной связи между х и у к функциональной. Таким образом, коэффициент корреляции при линейной зависимости служит как мерой тесноты связи, так и показателем, характеризующим степень приближения корреляционной зависимости между х и у к линейной. Поэтому близость значения r к 0 в одних случаях может означать отсутствие связи между х и у, а в других свидетельствовать о том, что зависимость не линейная.

В нашей задаче для расчета r построим вспомогательную таблицу 11.

Таблица 11. Вспомогательные расчеты линейного коэффициента корреляции

i

xi

yi

tx

ty

tx ty

1

12

28

1600

5184

-1,36526

-1,10032

1,502223

288

33,6

2

16

40

1296

3600

-1,22873

-0,91693

1,126667

216

64

3

25

38

729

3844

-0,92155

-0,9475

0,873167

167,4

95

4

38

65

196

1225

-0,47784

-0,53488

0,255587

49

247

5

43

80

81

400

-0,30718

-0,30564

0,093889

18

344

6

55

101

9

1

0,102394

0,015282

0,001565

0,3

555,5

7

60

95

64

25

0,273052

-0,07641

-0,02086

-4

570

8

80

125

784

625

0,955681

0,382056

0,365124

70

1000

9

91

183

1521

6889

1,331128

1,268425

1,688436

323,7

1665,3

10

100

245

2304

21025

1,638311

2,215924

3,630373

696

2450

Итого

520

1000

8584

42818

9,516166

1824,4

7024,4

В нашей задаче:

=
=29,299;
=
=65,436. Тогда по формуле (83) r = 9,516166/10 = 0,9516. Аналогичный результат получаем по формуле (84): r = 1824,4/(29,299*65,436) = 0,9516 или по формуле (85): r = (7024,4 – 52*100) / (29,299*65,436) = 0,9516, то есть связь между величиной основных фондов и валовым выпуском продукции очень близка к функциональной.

Проверка коэффициента корреляции на значимость (существенность). Интерпретируя значение коэффициента корреляции, следует иметь в виду, что он рассчитан для ограниченного числа наблюдений и подвержен случайным колебаниям, как и сами значения x и y, на основе которых он рассчитан. Другими словами, как любой выборочный показатель, он содержит случайную ошибку и не всегда однозначно отражает действительно реальную связь между изучаемыми показателями. Для того, чтобы оценить существенность (значимость) самого r и, соответственно, реальность измеряемой связи между х и у, необходимо рассчитать среднюю квадратическую ошибку коэффициента корреляции σr. Оценка существенности (значимости) r основана на сопоставлении значения r с его средней квадратической ошибкой:

.

Существуют некоторые особенности расчета σr в зависимости от числа наблюдений (объема выборки) – n.

1. Если число наблюдений достаточно велико (n>30), то σr рассчитывается по формуле (86):

. (86)

Обычно, если

>3, то r считается значимым (существенным), а связь – реальной. Задавшись определенной вероятностью, можно определить доверительные пределы (границы) r = (
), где t – коэффициент доверия, рассчитываемый по интегралу Лапласа (см. таблицу 4).

2. Если число наблюдений небольшое (n<30), то σr рассчитывается по формуле (87):

, (87)

а значимость r проверяется на основе t-критерия Стьюдента, для чего определяется расчетное значение критерия по формуле (88) и сопоставляется c tТАБЛ.

. (88)

Табличное значение tТАБЛ находится по таблице распределения t-критерия Стьюдента (см. приложение 2) при уровне значимости α=1-β и числе степеней свободы ν=n–2. Если tРАСЧ> tТАБЛ , то r считается значимым, а связь между х и у – реальной. В противном случае (tРАСЧ< tТАБЛ) считается, что связь между х и у отсутствует, и значение r, отличное от нуля, получено случайно.