Наряду со средним абсолютным изменением рассчитывается и среднее относительное. Базисное среднее относительное изменение определяется по формуле (53), а цепное среднее относительное изменение – по формуле (54):
Естественно, базисное и цепное среднее относительное изменения должны быть одинаковыми и сравнением их с критериальным значением 1 делается вывод о характере изменения явления в среднем: рост, спад или стабильность. В нашей задаче =
= 1,0114, то есть ежегодно в среднем смертность от болезней системы кровообращения растет в 1,0114 раза.Вычитанием 1 из среднего относительного изменения образуется соответствующий средний темп изменения, по знаку которого также можно судить о характере изменения изучаемого явления, отраженного данным рядом динамики. В нашей задаче = 1,0114 – 1 = 0,0114, то есть ежегодно в среднем смертность от болезней системы кровообращения растет на 1,14%.
Проверка ряда динамики на наличие в нем тренда (тенденции развития ряда) возможна несколькими способами (метод средних, Фостера и Стюарта, Валлиса и Мура и пр.), но наиболее простым является графическая модель, где на графике по оси абсцисс откладывается время, а по оси ординат – уровни ряда. Соединив полученные точки линиями, в большинстве случаев можно выявить тренд визуально. Тренд может представлять собой прямую линию, параболу, гиперболу и т.п. В итоге приходим к трендовой модели вида:
, (55)где
– математическая функция развития; – случайное или циклическое отклонение от функции; t – время в виде номера периода (уровня ряда). Цель такого метода – выбор теоретической зависимости в качестве одной из функций: – прямая линия; – гипербола; – парабола; – степенная; – ряд Фурье.Для выявления тренда (тенденции развития ряда) в нашей задаче построим график Y(t) (рис.4):
Рис.4. График динамики смертности от болезней системы кровообращения в РФ.
Из данного графика видно, что есть все основания принять уравнение тренда в виде линейной функции.
Определение параметров
в этих функциях может вестись несколькими способами, но самые незначительные отклонения аналитических (теоретических) уровней ( – читается как «игрек, выравненный по t») от фактических ( ) дает метод наименьших квадратов – МНК. При этом методе учитываются все эмпирические уровни и должна обеспечиваться минимальная сумма квадратов отклонений эмпирических значений уровней от теоретических уровней : . (56)В нашей задаче при выравнивании по прямой вида
параметры и отыскиваются по МНК следующим образом. В формуле (55) вместо записываем его конкретное выражение . Тогда . Дальнейшее решение сводится к задаче на экстремум, т.е. к определению того, при каком значении и функция двух переменных S может достигнуть минимума. Как известно, для этого надо найти частные производные S по и , приравнять их к нулю и после элементарных преобразований решить систему двух уравнений с двумя неизвестными.В соответствии с вышеизложенным найдем частные производные:
Сократив каждое уравнение на 2, раскрыв скобки и перенеся члены с y в правую сторону, а остальные – оставив в левой, получим систему нормальных уравнений:
(57)где n – количество уровней ряда; t – порядковый номер в условном обозначении периода или момента времени; y – уровни эмпирического ряда.
Эта система и, соответственно, расчет параметров
и упрощаются, если отсчет времени ведется от середины ряда. Например, при нечетном числе уровней серединная точка (год, месяц) принимается за нуль. Тогда предшествующие периоды обозначаются соответственно –1, –2, –3 и т.д., а следующие за средним (центральным) – соответственно 1, 2, 3 и т.д. При четном числе уровней два серединных момента (периода) времени обозначают –1 и +1, а все последующие и предыдущие, соответственно, через два интервала: , , и т.д.При таком порядке отсчета времени (от середины ряда)
= 0, поэтому, система нормальных уравнений упрощается до следующих двух уравнений, каждое из которых решается самостоятельно: (58)Как видим, при такой нумерации периодов параметр
представляет собой средний уровень ряда. Определим по формуле (58) параметры уравнения прямой, для чего исходные данные и все расчеты необходимых сумм представим в таблице 6.Из таблицы получаем, что
= 12070,2/10 = 1207,02 и = 4195/330 = 12,7121. Отсюда искомое уравнение тренда =1207,02+12,7121t. В 6-м столбце таблицы 6 приведены трендовые уровни, рассчитанные по этому уравнению. Для иллюстрации построим график эмпирических (маркеры-кружочки) и трендовых уровней (рис.5).Рис.5. График эмпирических и трендовых уровней смертности от болезней системы кровообращения в РФ.
По полученной модели для каждого периода (каждой даты) определяются теоретические уровни тренда (
) и оценивается надежность (адекватность) выбранной модели тренда. Оценку надежности проводят с помощью критерия Фишера, сравнивая его расчетное значение Fр с теоретическими значениями FТ (приложение 1). При этом расчетный критерий Фишера определяется по формуле: , (59)где k – число параметров (членов) выбранного уравнения тренда; ДА – аналитическая дисперсия, определяемая по формуле (61); До – остаточная дисперсия (62), определяемая как разность фактической дисперсии ДФ(60) и аналитической дисперсии: