ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Физический факультет
Кафедра общей физики
«ИЗМЕРИТЕЛЬНЫЙ ПРАКТИКУМ»
А.В. Багинский, О.А. Брагин, А.А. Дорошкин
Работа 4.1-4.2
КОМПЕНСАЦИОННЫЕ МЕТОДЫ ИЗМЕРЕНИЙ
Учебно-методическое пособие
Новосибирск
2008
Представлено описание модернизированной лабораторной работы измерительного практикума кафедры общей физики НГУ. Работа выполняется студентами 1–2-го курсов физического факультета, факультета информационных технологий, геолого-геофизического, медицинского факультетов и факультета естественных наук.
При выполнении работы студенты знакомятся с компенсационными методами измерений ЭДС и сопротивления. Работа может быть использована при обучении студентов других естественнонаучных и технических факультетов.
Рецензент
Д.ф.-м.н. А. Д. Косинов
Содержание
Введение…………………………………………………………………………4
4.1 Потенциометр……………………………………………………………….4
Одноконтурный потенциометр………………………………………………...6
Многоконтурные потенциометры.…………………………………………….7
Термопара….……………………………………………………………………8
Задания…………………………………………………………………………12
Приложение. Органы управления потенциометра и некоторые
рекомендации по работе с потенциометром………………………………...14
4.2 Мостовые методы измерения сопротивлений…………………………...17
Одинарный мост ………………………………………………………………17
Двойной мост………………………………………………………………..…19
Органы управления и клеммы для подключения
внешних элементов моста……………………………………………….……21
Задания…………………………………………………………………………21
Лабораторная работа 4 (4.1, 4.2)
КОМПЕНСАЦИОННЫЕ МЕТОДЫ ИЗМЕРЕНИЙ
Цель работы: изучение компенсационных методов измерения ЭДС, напряжений и сопротивлений.
Оборудование
4.1. Потенциометр постоянного тока; нормальный элемент Вестона; батарея питания потенциометра; нуль-индикатор, милливольтметр; термопара; нуль-термостат; печь с тиглем; источник питания печи; регистратор ЭДС термопары.
4.2. Мост постоянного тока, нуль-индикатор, источник питания моста (батарея, аккумулятор или др.), плата с сопротивлениями, малое проволочное сопротивление, образцовое сопротивление или магазин сопротивлений, катушка из тонкого медного провода, рамка с натянутой медной проволокой и подвижными потенциальными контактами, амперметр, переключатель полярности, реостат, штангенциркуль, микрометр.
Введение
Существует класс электроизмерительных приборов, принцип действия которых основан на сравнения измеряемой (неизвестной) величины с известной, образцовой. В качестве элемента сравнения в таких приборах используются, как правило, рабочие эталоны единиц соответствующих величин: эталон напряжения, эталон сопротивления, эталон индуктивности и другие. Этим обеспечивается высокая точность и надежность измерений. Представителями данного класса приборов являются мосты и потенциометры.
4.1 потенциометр
Принцип действия потенциометра
Потенциометры предназначены для измерения электродвижущих сил (ЭДС) и напряжений методом компенсации измеряемого напряжения эталонным. Суть компенсационного метода измерения напряжения ясна из рис. 1.1. Источник измеряемого напряжения Ux включается встречно регулируемому образцовому источнику Uобр. Меняя напряжение образцового
, .
Отсюда:
.
Таким образом, зная RN и RX, мы, тем самым, определили отношение измеряемого напряжения к эталонному. Именно эта методика (немного модифицированная) реализована в потенциометрах.
Одноконтурный потенциометр
Схема измерений, показанная на рис. 1.2, вполне работоспособна, однако процедура измерений не удобна и, кроме того, возникают определенные технические трудности, связанные с очень большим внутренним сопротивлением рабочего эталона напряжения – нормального элемента Вестона. В реальном потенциометре строго фиксируют ток, протекающий через R0 (рабочий ток потенциометра). Если ток, протекающий через R0 всегда один и тот же, то делитель напряжения можно заранее отградуировать (т.е. разметить и оцифровать положения движка R0) непосредственно в Вольтах (а не в Омах), что делает процедуру измерений гораздо более удобной – сразу после компенсации напряжения Ex его значение можно прочитать по оцифровке делителя. Рабочий ток настраивается с использованием эталона напряжения (нормального элемента) перед началом измерений.
Упрощенная схема потенциометра, показанная на рис. 1.3, отличается от схемы, приведенной на рис. 1.2, дополнительным сопротивлением Rб, предназначенным для регулирования тока в цепи R0, отдельным входом для подключения рабочего эталона напряжения (нормального элемента Вестона) и переключателем П, при помощи которого можно подключать к делителю R0 либо измеряемое, либо эталонное напряжение. Для настройки рабочего тока при подготовке потенциометра к работе нормальный элемент, как видно из схемы, подключается в фиксированную точку делителя. Эта специальная контрольная точка, выбранная таким образом, чтобы при протекании через R0 рабочего тока напряжение в этой точке было в точности равным ЭДС нормального элемента Вестона. Поэтому, если при помощи переключателя П подключить нормальный элемент к делителю, то при токе равном рабочему нуль-индикатор должен показать ноль. Если же это не так, то ток следует отрегулировать при помощи Rб, добившись нулевых показаний индикатора. После того как рабочий ток установлен, потенциометр готов к работе. Более подробно о настройке потенциометра прочтите в приложении.
|
Многоконтурные потенциометры
Из изложенного выше ясно, что настроенный потенциометр представляет собой не что иное, как регулируемый источник напряжения с высокой дискретностью его изменения. Так 6-декдый потенциометр перекрывает диапазон более 1 В с дискретностью 1 мкВ (см. приложение). Создание прецизионного источника с таким большим динамическим диапазоном является сложной технической задачей. Проще использовать два или три включенных последовательно источника, каждый из которых обладает меньшей относительной дискретностью изменения выходного напряжения. Так, если вернуться к схеме, приведенной на рис 1.1, то вместо одного источника Uобр с выходным напряжением, например, 0…1 В и дискретностью его установки 1 мкВ можно включить последовательно два источника: 0…1 В с дискретностью 1 мВ и 0…1 мВ с дискретностью 1 мкВ. Многоконтурный потенциометр построен именно по этому принципу и представляет собой два (или больше) одноконтурных потенциометров, смонтированных в одном корпусе и соединенных так, чтобы снимаемые с них напряжения суммировались на едином входе многоконтурного потенциометра.
Часть имеющихся в лаборатории потенциометров являются двухконтурными. При подготовке такого потенциометра к работе, необходимо установить два рабочих тока. Ток в “старшем” контуре настраивается с использованием нормального элемента, точно так же как у одноконтурного потенциометра. Образцовое напряжение для настройки рабочего тока во втором контуре поступает с делителя первого контура. Поэтому настройка многоконтурного потенциометра, должна производиться в строгом порядке – нельзя настраивать ток в “младшем” контуре, не настроив предварительно ток в “старшем” контуре. Что же касается собственно процесса измерений, то он ничем не отличается от описанного ранее.