Смекни!
smekni.com

Линий передачи (стр. 4 из 8)

Рисунок 10 – Коаксиальное дроссельное вращающееся соединение:

а) – эскиз, б) схема замещения дроссельной канавки, в) схема замещения соединения

При реализуемых значениях волновых сопротивлений канавок, КБВ соединителя превышает уровень 0,9 в полосе частот 50-70% рабочей частоты.

Электрическая прочность коаксиального дроссельного вращающегося соединителя несколько снижается по сравнению с электрической прочностью тракта, так как максимальная напряженность электрического поля в средней части дроссельной канавки внутреннего проводника повышается по сравнению с напряженностью поля у поверхности центрального проводника тракта.

3. Переходы между линиями передачи различных типов

Очень распространенными узлами трактов СВЧ являются пере­ходы с одной линии передачи на другую, в которых используются различные типы волн. Эти переходы называют также трансформаторами типов волн или возбудителями волны заданного типа. При проектировании пере­ходов основное внимание уделяется достижению хорошего качества согласования в полосе частот при обеспечении необходимой элект­рической прочности.

В технике СВЧ применяют большое число таких устройств различных конструк­ций. Рассмотрим характерные конструкции переходов.

3.1. Коаксиально-волноводные переходы [1-3]

Соединение коаксиальной линии с прямоугольным волноводом (рис. 11) является трансформатором волны типа Т в коаксиальной линии в волны типа Н или Е в прямоугольном волноводе и относится к числу так называемых зондовых переходов. Для возбуж­дения волны типа Н в волновод вводится штырь (зонд), перпендикуляр­ный продольной оси волновода (рис. 11а), т. е. поперек волновода, а для возбуждения волны типа Е штырь вводится с торца волновода параллельно продольной оси волновода (рис. 11б). Штырь, являю­щийся продолжением внутреннего проводника коаксиальной линии, служит антенной, излучающей электромагнитную энергию в волновод или отбирающей ее из волновода. Для получения минимального отражения волн от перехода, необходимо коаксиальную линию и волно­вод согласовать, т. е. создать режим бегущих волн. Согласование осу­ществляется подбором длины штыря l1, расстояния l2 от штыря до за­глушки (поршня), замыкающей накоротко волновод, и расстояния l3 от штыря до ближайшей узкой стенки волновода (рис. 11а). Для согласования перехода в диапазоне частот используется подвижный короткозамыкающий поршень, компенсирующий реактивную состав­ляющую входного сопротивления штыря.

Рисунок 11 – Волноводно – коаксиальные переходы:

а) – для всех типов Н; б) – для всех типов Е

Широкополосный коаксиально-волноводный переход с поперечным стержнем (рис. 12), имеет полосу пропускания более 30% за счет того, что поперечный стержень обеспечивает равномер­ность и малую зависимость от частоты распределения тока на верти­кальной части зонда.

Рисунок 12 – Широкополосный коаксиально – волноводный переход

Возбуждение прямоугольного волновода с волной типа Н11 от коаксиального волновода с Т-волной производится с помощью коаксиально-волноводных переходов (рис. 13). Основным элементом таких переходов являются обтекаемые электрическим током штыри, размещаемые в короткозамкнутом с одной стороны волноводе параллельно силовым линиям электрического поля Е.

В зондовом переходе (рис. 13а) согласование входов обеспечивается изменением длины зонда lз, а также подбором расстояний l и х, определяющих положение зонда. Для расширения полосы частот согласования желательно увеличивать диаметр зонда d. При тщательном выполнении зондовый переход обеспечивает полосу частот согласования 15-20 % относительно расчетной частоты при КБВ не менее 0,95. Недостатком зондового перехода является снижение электропрочности из-за концентрации силовых линий электрического поля Е на конце зонда. В определенной мере этот недостаток преодолевается в коаксиально-волноводном переходе с последовательным шлейфом (рис. 13б), однако даже при самом тщательном подборе расстояний l и lш рабочая полоса частот составляет около 7%.

Рисунок 13 – Коаксиально – волноводные переходы :

а) – зондовый, б) – с коаксиальным шлейфом, в) – с поперечным стержнем,

г) – «пуговичный»

Лучшие результаты по согласованию и электропрочности имеет переход с поперечным стержнем (рис.13в), дополненный согласующей индуктивной диафрагмой. В таком переходе достижима относительная полоса частот согласования около 15%. Максимальные широкополосность (около 20% при КБВ не менее 0,95) и электропрочность достигаются в коаксиально-волноводных переходах так называемого пуговичного типа (рис.13г), требующих, однако, тщательного подбора формы проводников в сочетании с дополнительным согласованием с помощью индуктивной диафрагмы.

3.2. Переходы от прямоугольного волновода к круглому [1-3]

Переход от прямоугольного волновода с волной Н10 к круглому волноводу с волной Н11 осуществляется путем постепенной деформации поперечного сечения волновода от прямоугольного к круглому (рис. 14а ).

Если длина перехода составляет примерно длину волны в волно­воде или больше ее, то его полоса пропускания равна полосе частот круглого волновода с волной типа Н11. Размеры волноводов выбирают­ся такими, чтобы в них в заданном диапазоне частот могли рас­пространяться только низшие типы волн, соответственно Н10 в пря­моугольном и Н11 — в круглом волноводе. Если длина такого перехода превышает длину волны, то отражения в широкой полосе частот оказываются незначительными.

Для уменьшения размеров перехода можно использовать компактные, но более узкополосные сту­пенчатые переходы (рис. 14б). В данном случае сочленение соосных прямоугольного и круглого волноводов осуществляется через согласующую четвертьволновую вставку с овальной формой поперечного сечения.

а) б)

Рисунок 14 – Переходы от прямоугольного волновода к круглому

Большинст­во используемых на практике трансформаторов типов волн являются обратимыми элемен­тами, т.е. конструкция, обеспечивающая переход, Н10 ® Н11, обеспечивает и обратный переход Н11 ® Н10.

Возбуждение волны Н11 в круглом волноводе может произво­диться от прямоугольного волновода через отверстие в боковой стенке. Если широкие стенки прямоугольного волновода ориенти­рованы параллельно оси круглого волновода (рис. 15а), то в круглом волноводе возбуждаются волны Н, распространяющиеся в обе стороны от ответвления с одинаковыми фазами. При попе­речном расположении возбуждающей щели в круглом волноводе (рис. 15б) волны Н11, возбуждающиеся справа и слева от нее, противофазны. Если требуется обеспечить передачу волны Н11 в одном направлении, то один из концов круглого волновода закора­чивают, причем для разветвления на рис. 15а расстояние между центром щели и короткозамыкателем должно быть близким λв/4, а в случае, показанном на рис. 15б —близким λв /2.

а) б)

Рисунок 15 – Тройниковые разветвления прямоугольного и круглого волноводов

Особенно трудной задачей является конструирование возбуди­телей волны Н01 в круглом волноводе. Здесь главное требование состоит в обеспечении высокой степени чистоты возбуждения вол­ны Н01 при глубоком подавлении ряда низших и высших волн, способных к распространению в круглом волноводе большого диа­метра. На рис. 16 показана одна из возможных конструкций пе­рехода от прямоугольного волновода с волной Н10 к круглому вол­новоду с волной Н01, основанная на принципе плавной деформации формы поперечного сечения волновода и структуры электрическо­го поля.

Рисунок 16 – Плавный переход для возбуждения волны Н01 в круглом волноводе

Волноводный Е-тройник и две продольные скрутки на уг­лы 90° в противоположных направлениях образуют систему двух прямоугольных волноводов, соединенных узкими стенками и содер­жащих поля равной амплитуды с противоположными фазами. За­тем эта система плавно преобразуется к двум секторным волново­дам с общим ребром. По мере увеличения угла раскрыва секторных волноводов образуется круглый волновод с продольной металлической перегородкой. Обрыв этой перегородки не изменяет струк­туру электромагнитного поля, и на выходе перехода получается круглый волновод с волной Н01. Для обеспечения требуемой чисто­ты возбуждения волны Н01 этот переход должен иметь длину l » λ0.