Смекни!
smekni.com

Р. П. Баканов (стр. 20 из 43)

Вернуться к Содержанию

Запуск Большого адронного коллайдера. Большой адронный коллайдер (англ. Large Hadron Collider, LHC; сокращенно БАК) – ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжелых ионов (ионов свинца) и изучения продуктов их соударений. Коллайдер построен в научно-исследовательском центре Европейского совета ядерных исследований (по-французски: Conseil Européen pour la Recherche Nucléaire, то есть CERN), на границе Швейцарии и Франции, недалеко от Женевы. БАК является самой крупной экспериментальной установкой в мире.

Большим назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 метра; адронным – из-за того, что он ускоряет адроны, то есть частицы, состоящие из кварков; коллайдером (англ. collide – сталкиваться) – из-за того, что пучки частиц ускоряются в противоположных направлениях и сталкиваются в специальных точках столкновения.

В начале XX века в физике появились две основополагающие теории – общая теория относительности Альберта Эйнштейна, которая описывает Вселенную на макроуровне, и квантовая теория поля, которая описывает Вселенную на микроуровне. Проблема в том, что эти теории несовместимы друг с другом. Например, для адекватного описания происходящего в черных дырах нужны обе теории, а они вступают в противоречие.

Эйнштейн многие годы пытался разработать единую теорию поля, но безуспешно, поскольку игнорировал квантовую механику. В конце 1960-х физикам удалось разработать Стандартную модель, которая объединяет три из четырех фундаментальных взаимодействий – сильное, слабое и электромагнитное. Гравитационное взаимодействие по-прежнему описывают в терминах теории вероятности. Таким образом, в настоящее время фундаментальные взаимодействия описываются двумя общепринятыми теориями: Общая теория вроятности и Стандартная модель. Их объединения пока достичь не удалось из-за трудностей создания теории квантовой гравитации.

Для дальнейшего объединения фундаментальных взаимодействий в одной теории используются различные подходы: теория струн, теория супергравитации, петлевая квантовая гравитация и другие. Некоторые из них имеют внутренние проблемы, и ни у одной из них нет экспериментального подтверждения. Проблема в том, что для проведения соответствующих экспериментов нужны энергии, недостижимые на современных ускорителях заряженных частиц.

Больной адронный коллайдер позволит провести эксперименты, которые ранее было невозможно провести и, вероятно, подтвердит или опровергнет часть этих теорий. Так, существует целый спектр физических теорий с размерностями больше четырех, которые предполагают существование «суперсимметрии» – например, теория струн, которую иногда называют теорией суперструн именно из-за того, что без суперсимметрии она утрачивает физический смысл. Подтверждение существования суперсимметрии, таким образом, будет косвенным подтверждением истинности этих теорий[45].

Новый ускоритель рассчитан на энергии, прежде не подвластные человечеству. С его помощью можно будет получить новые частицы, которые сейчас неизвестны, новые состояния вещества.

На кольце ускорителя установлены четыре детекторные станции. Это своего рода ловушки и суперсовременные исследовательские лаборатории одновременно. Они призваны помочь ученым обнаружить и инструментально зарегистрировать ожидаемые (предсказанные) теоретиками эффекты при столкновении частиц сверхвысокой энергии, идентифицировать их. А также, вполне возможно, выявить и попытаться объяснить абсолютно новые явления и состояния.

Каждый такой детектор – высотой с многоэтажный дом и в буквальном смысле напичкан электроникой. Детектор весит 12,5 тысяч тонн, спроектирован и построен при сотрудничестве 2250 физиков из 33 стран.

Ученые из России участвуют во всех готовящихся экспериментах. Ученые рассчитывают подтвердить или опровергнуть существующие предположения о происхождении массы во Вселенной. Чтобы понять, насколько это непростая задача, достаточно привести лишь одно обстоятельство: при том что ежесекундно в детекторе будет происходить 800 миллионов столкновений, хиггсовский бозон можно будет наблюдать один раз в день. То есть один бозон на
10 000 000 000 000 столкновений! В сравнении с этой задачей поиск иголки в стоге сена выглядит детской забавой.

Цель эксперимента ALICE – получить и исследовать кварк-глюонную плазму. В этом состоянии, как полагают ученые, находились на ранней стадии образования Вселенной кварки (фундаментальные частицы) и глюоны (переносчики сильного взаимодействия), которые теперь, в нынешней «холодной» Вселенной, заключены внутри протонов и нейтронов. Чтобы получить плазму, на ускорителе будут разгонять и сталкивать «лоб в лоб» ионы свинца при энергиях в 300 раз выше тех, что достигались в прежних экспериментах.

По масштабам коллайдер можно сравнить с проектом создания термоядерного реактора или запуском человека на Луну. В этом проекте, как в свое время в атомном, собрали не только ученых, но и производственников, ведь необходимо создавать принципиально новое оборудование и новые материалы.

К примеру, чтобы удержать пучок ускоренных частиц в кольцеобразном подземном тоннеле длиной 27 километров, необходимы сильные магнитные поля, а их можно получить только с использованием эффекта сверхпроводимости. Коллайдер станет самой большой «сверхпроводящей» установкой в мире. Около 4 тысяч тонн металла будет охлаждено до температуры на 300 градусов ниже комнатной. В результате ток 1,8 миллионов ампер побежит по сверхпроводящим кабелям почти без потерь.

Большой адронный коллайдер – самый мощный в истории ускорителя элементарных частиц – впервые запущен летом 2008 года (неудачно), второй – осенью 2009-го. Согласно ряду теорий, в результате его работы будут возникать «черные дыры», которые начнут поглощать материю. Сторонники этой теории утверждают, что запуск коллайдера будет равносилен концу света. Их противники заявляют, что даже если «черные дыры» будут возникать, то время их существования будет столь мало, что они не успеют начать поглощать материю[46].

Вернуться к Содержанию

Экология и судьбы человечества. Термин «экология» возник в рамках биологии. Его автором был Э. Геккель (1866 г.). Экология первоначально рассматривалась как часть биологии, изучающая взаимодействие живых организмов в зависимости от состояния окружающей среды. Позднее на Западе появилось понятие «экосистема», а в СССР – «биоценоз» и «биогеоценоз» (академик В.Н. Сукачев). Это – почти одинаковые термины. Первые два – экосистема и биоценоз – абсолютно тождественные. Они означают любую совокупность взаимодействующих живых организмов. Последний отличается от первых только тем, что в нем участвует частица «гео», фиксирующая тот факт, что данная экосистема рассматривается на некоторой вполне определенной территории и учитывает влияние окружающей среды на взаимодействие живых организмов.

Первоначально термин «экология» означал дисциплину, которая изучает эволюцию фиксированных экосистем. И даже теперь в курсах общей экологии основное место занимают проблемы, имеющие, главным, образом биологическое содержание, что крайне сужает содержание предмета.

Но и чрезмерное расширение понятия, включение его в жаргон также недопустимо. Так, например, говорят о том, что в городе «плохая экология». Выражение бессмысленное, ибо экология – это научная дисциплина, и она одна для всего человечества. Можно говорить о плохой экологической обстановке, об экологических условиях, о том, что в городе отсутствуют квалифицированные экологи, но не о плохой экологии. Это так же бессмысленно, как говорить о плохой арифметике или алгебре.

Промышленная революция, начавшаяся в XVIII веке, внесла существенные изменения во взаимоотношения природы и человека. До поры до времени человек, как и другие живые существа, был естественной составляющей своих экосистем, жил по законам природы, вписывался в кругообороты ее веществ. Но, начиная со времен неолитической революции, когда было изобретено земледелие, а затем и скотоводство, взаимоотношения человека и природы начинают качественно меняться. Сельскохозяйственная деятельность создает искусственные экосистемы, так называемые агроценозы, «живущие» по собственным законам, – для своего поддержания они требуют постоянного целенаправленного труда человека. Без вмешательства человека они существовать не могут. Постепенно человек начинает извлекать полезные ископаемые. И что, может быть, самое главное, – в результате своей активности человек меняет характер кругооборота веществ в природе, то есть меняет сам характер окружающей среды. И по мере роста населения, по мере роста потребностей человека свойства среды обитания все более и более изменяются. Заметим, людям кажется, что их деятельность приводит к адаптации к местным условиям. Но эта адаптация носит локальный характер, и далеко не всегда, улучшая эти условия для себя, отдельный человек улучшает условия обитания для рода, племени, деревни, города. Выбросив отходы со своего двора, он загрязняет чужой, что в конечном итоге оказывается вредным и для отдельного человека.

Однако до самого последнего времени эти изменения происходили столь медленно, что о них никто серьезно и не задумывался. Конечно, происходили изменения, и человеческая память их фиксировала: Европа, например, еще в средние века была покрыта непроходимыми лесами. Бескрайние ковыльные степи постепенно превращались в пашни, реки мелели, зверья и рыбы становилось меньше, и люди знали, что всему этому причина одна – человек! Но все эти изменения проходили столь медленно, что они становились заметными лишь по прошествии поколений. Природа оставалась по-прежнему лишь естественным фоном, на котором развивались события истории. Конечно, происходили и экологические кризисы, когда непомерная человеческая жадность подрывала основу существования человека, но они носили локальный характер и воспринимались в качестве кары небесной.