Смекни!
smekni.com

Системы в экономике (стр. 17 из 135)

Последними этапами можно считать проведение тестирования нейросети и ее запуск для получения прогнозов и оценка результатов. Для проверки правильности обучения построенной нейронной сети в нейроимитаторах предусмотрены специальные средства ее тестирования. В сеть вводится некоторый сигнал, который, как правило, не совпадает ни с одним из входных сигналов примеров обучающей выборки. Далее анализируется получившийся выходной сигнал сети.

Тестирование обученной сети может проводиться либо на одиночных входных сигналах, либо на тестовой выборке, которая имеет структуру, аналогичную обучающей выборке, и также состоит из пар («вход», «требуемый выход»). Обычно, обучающая и тестовая выборки не пересекаются. Тестовая выборка строится индивидуально для каждой решаемой задачи. Если результаты тестирования не удовлетворяют, то просматривается набор входных данных, изменяют некоторые учебные программы или перестраивают сеть.

Выходные данные могут быть представлены как числовыми данными, так и текстовыми, преобразованными в уникальный набор чисел в зависимости от класса выполняемой задачи.

Различают два типа выходных сигналов:

1. Дискретные. Такие выходные сигналы используются для решения задач распознавания и классификации, причем как имеющихся объектов, так и вновь вводимых, ранее неизвестных. При этом данные для обучения и классы классифицируемых объектов могут быть самой различной природы, условием построения хорошей модели будет лишь наличие корреляции между ними, причем в самой неявной и неформализуемой форме. Примером выходных классификации может быть обычная гистограмма, определения состоятельности предприятия.

2. Непрерывные. выходные сигналы используются для задач аппроксимации и экстраполяции величин, имеющих абсолютные значения и используются для построения прогнозов и функциональных зависимостей для различной информации, причем сразу по нескольким переменным (критериям оценки).

Главная ценность нейронных технологий состоит в том, что они позволяют прогнозировать будущее. Однако нейросети – это не волшебная палочка и думать все равно нужно, потому что качество прогнозов определяется, прежде всего, уровнем профессионализма пользователя.

Перечислим основные классы задач, возникающих в финансовой области, которые эффективно решаются с помощью нейронных сетей:

· прогнозирование временных рядов на основе нейросетевых методов обработки;

· страховая деятельность банков;

· прогнозирование банкротств на основе нейросетевой системы распознавания;

· определение курсов облигаций и акций предприятий с целью инвестирования;

· применение нейронных сетей к задачам биржевой деятельности;

· прогнозирование экономической эффективности финансирования инновационных проектов;

· предсказание результатов займов;

· оценка платежеспособности клиентов;

· оценка недвижимости;

· рейтингование;

· общие приложения нейронных сетей и пр.

Прогнозирование временных рядов на основе нейросетевых методов обработки.

· Прогнозирование кросс-курса валют.

· Прогнозирование котировок и спроса акций для биржевых спекуляций (не для долгосрочного вложения).

· Прогнозирование остатков средств на корреспондентских счетах банка.

В настоящее время прогноз курсов иностранных валют определяется экспертизой квалифицированных специалистов в области обмена валют, которые всегда в дефиците. Исследования показывают, что имеется ряд показателей и математических зависимостей, которые дают возможность прогнозирования курса валюты, хотя могут и не относиться к финансовой области непосредственно. Однако динамическая природа рынков не позволяет выделить единственный «точный» показатель, так как условия рынка со временем меняются и решение задачи возможно при использовании сочетания ряда показателей, то есть переход к нелинейной многокритериальной модели. Специалистами Лондонского Ситибанка (Citibank NA London) разработаны коммерческие программы на базе искусственных нейронных сетей для прогнозирования курса валют.

Страховая деятельность банков производит оценку риска страхования инвестиций на основе анализа надежности проекта и оценку риска страхования вложенных средств.

Применение нейронных сетей для оценки риска страхования особенно эффективно с точки зрения способности анализировать как ранее накопленные данные по результатам страхования, так и коррелирующие данные, определяемые как дополнительные. Возможна оценка надежности проекта на основе нейросетевой системы распознавания надежности (множество оценок – да, нет).

Прогнозирование банкротств на основе нейросетевой системы распознавания:

· анализ надежности фирмы с точки зрения возможности ее банкротства с помощью нейросетевой системы распознавания и выдача результата в дискретном виде (да, нет);

· анализ величины вероятности банкротства фирмы на основе многокритериальной оценки с построением нелинейной модели с помощью НС.

Фактическое банкротство может наступить задолго до того, как бедственная ситуация станет очевидной. Сегодня модной экономической теорией является теория антикризисного управления, говорящая о необходимости быстрой диагностики грядущего банкротства тех или иных учреждений. Предсказание банкротства лучше делать не на основе формальных математических выражений, а с учетом предыдущего опыта и статистики. Здесь НС могут оказать поистине неоценимую услугу – "высветить" признаки надвигающегося банкротства (пример результата – 75% вероятности банкротства).

Анализ банкротств, использующий финансовые соотношения, является весьма важным по нескольким соображениям. Во-первых, управление фирмы может выявлять потенциальные проблемы, которые требуют внимания. Во-вторых, инвесторы используют финансовые соотношения для оценки фирм. Наконец, аудиторы используют их как инструмент в оценке деятельности фирм. Данные, используемые для обанкротившихся фирм, могут быть взяты из последних финансовых бюллетеней, вышедших перед тем, как фирмы объявили банкротство.

Определение курсов облигаций и акций предприятий с целью вложения средств в эти предприятия подразделяется на:

· выделение долгосрочных и краткосрочных скачков курсовой стоимости акций на основе нелинейной нейросетевой модели;

· предсказание изменения стоимости акций на основе нейросетевого анализа временных экономических рядов;

· распознавание ситуаций, когда резкое изменение цены акций является результатом биржевой игры с помощью нейросетевой системы распознавания;

· определение соотношения котировок и спроса.

Прогнозирующая система может состоять из нескольких нейронных сетей, которые обучаются взаимосвязям между различными техническими и экономическими показателями и периодами покупки и продажи акций. Целью прогноза является выбор наилучшего времени для покупки и продажи акций. Здесь рассматриваются также задачи формирования портфеля ценных бумаг и распознавания шаблонов на графике изменения курсов акций, которые позволяют прогнозировать курс акций на последующем отрезке времени.

Применение нейронных сетей к задачам анализа биржевой деятельности:

· нейросетевая система распознавания всплесков биржевой активности;

· анализ деятельности биржи на основе нейросетевой модели;

· предсказание цен на товары и сырье с выделением трендов вне зависимости от инфляции и сезонных колебаний;

· нейросетевая система выделения трендов по методикам «японских свечей» и других гистографических источников отображения информации.

Прогнозирование экономической эффективности финансирования инновационных проектов:

· предсказание на основе анализа реализованных ранее проектов;

· предсказание на основе соответствия предлагаемого проекта экономической ситуации.

В первом случае используется способность нейронных сетей к / предсказанию на основе временных рядов, во втором – построения нелинейной модели на базе нейронной сети.

Предсказание результатов займов определяет возможности кредитования предприятий и целесообразность предоставления кредитов и займов без залога. Редко используется при предоставлении займов без залога на основе анализа дополнительной информации о потребителе кредитов. Оценивает риск займа на основе построения нелинейной модели.

Оценка платежеспособности клиентов – одна из первых областей банковской деятельности, в которых применение НС дало заметный эффект. Располагая историческими данными по всем таким клиентам, можно натренировать НС таким образом, что на ее входе будут показатели клиента, а на выходе – прогнозируемая степень его платежеспособности. Данные каждого вновь поступившего клиента обрабатываются с целью сбора информации и подаются на вход без перенастройки НС. В каждом банке такие методики реализуются по-своему. Как правило, нейросетевые прогнозы сочетаются с экспертными оценками, которые представлены системой требований, предъявляемых банком к потенциальным заемщикам. Удачным считается прогноз, сбывшийся на 80-90%.

Оценка недвижимости сопряжена с анализом множества факторов, зависимость между которыми неизвестна, поэтому стандартные методы анализа неэффективны в этом случае. Эксперты-оценщики, работающие в агентствах, не лишены доли субъективизма. НС эффективно решают обе вышеупомянутые проблемы. Примером фирмы, успешно реализующей данные технологии, служит компания Attrasoft (Бостон). Российские агентства недвижимости предпочитают более традиционные методы.

Рейтингование – еще одна задача, традиционно поручаемая НС. Однако проблема состоит в том, что большинство рейтингов характеризуют свои объекты по ряду критериев. Рейтинговые компании изобретают свои оригинальные расчетные формулы. В США относительно недавно был предложен следующий способ рейтингования: данные сотен фирм, представленных в многомерном пространстве признаков, были обработаны с помощью самообучающихся нейронных сетей (сетей Кохонена), которые произвели классификацию на основе стандартного кластерного анализа. Иными словами, все множество компаний, представленных в многомерном пространстве, было разложено на группы (кластеры) и тем самым проранжировано в определенном порядке без приложения каких бы то ни было принудительных критериев. Разумеется, нейросеть не выставляла рейтинги. Она всего лишь сгруппировала объекты и сделала на высоком уровне.