Смекни!
smekni.com

Оптоинформатика (стр. 12 из 19)

Исчезновение интерференционной модуляции излучения при увеличении разности хода в воздушном клине несложно качественно объяснить с помощью обсужденной модели квазимонохроматического света. Каждый из волновых цугов, формирующих излучение, на границе 1 делится на два. Один из этих цугов проходит дополнительное расстояние Dl. Если Dl<ctц, то в точке наблюдения интерференционной картины для любого из необъятного множества цугов наблюдается перекрытие его временного начала (часть падающего цуга, отраженная от границы 1) и конца (другая часть этого же цуга, прошедшая через поверхность 1 и отраженная от границы 2, т.е. прошедшая дополнительное расстояние Dl). Поскольку колебания внутри отдельного волнового пакета согласованны, то реализуется интерференционная картина. Если Dl>ctц, то в плоскости наблюдения суммируются цуги, порожденные разными исходными цугами падающего на клин излучения. Т.е. за время усреднения инерционным фотоприемником складывается огромное число волновых пакетов, фазы колебаний которых никак не связаны друг с другом. Интерференционная модуляция исчезает.

Размер области пространства хинт, в которой регистрируется интерференционная модуляция излучения, может быть охарактеризован, например, как расстояние, на котором отклонение значения интенсивности в центре светлой полосы от интенсивности равномерной засветки уменьшается от максимального отклонения для первой полосы в e раз (см. рис.4в). Тогда время когерентности естественно оценить по формуле

, где
- длина когерентности.

Из вышеизложенного понятны оценки tког»tц и lког»ctц,. Они подтверждаются и результатами численных экспериментов, приведенных на рис. 4. Ранее было отмечено, что

, поэтому
. Последнее соотношение позволяет оценивать время когерентности излучения по ширине его спектра. Соответственно для длины когерентности справедливо
. Время и длина когерентности являются важнейшими характеристиками частично когерентного излучения. Их смысл понятен. tког - это промежуток времени, через который колебания поля излучения в данной точке пространства перестают быть согласованными.
- это максимальное расстояние, на которое в интерференционных устройствах можно развести волны, формируемые из данной волны с частичной временной когерентностью, чтобы еще наблюдалась интерференционная картина.

Длина когерентности лазерного излучения с высокой временной когерентностью может составлять десятки и даже сотни метров. Длина когерентности характеризуемого широким спектром солнечного излучения - всего единицы микрометров. Т.е. для солнечного излучения выполняется неравенство

, где l - длина волны центральной линии в спектре Солнца. Это неравенство эквивалентно неравенству

, (5)

где w - центральная частота в спектре, а Dw - ширина этого спектра Свет, характеризуемый соотношением (5) обычно называют некогерентным. Некогерентное излучение формируется множеством волновых цугов, значительно различающихся частотами. Это различие может быть обусловлено, например, тем, что цуги испускаются атомами светящегося тела разного сорта, а если атомами одного сорта, то на разных частотах из их собственного набора. Временную динамику поля некогерентного излучения можно представить, вновь обратившись к рис. 2в. Однако, предполагая на этот раз, что разброс расстояний между нулями поля в его временной зависимости становится существенно большим

.

В заключение раздела отметим, что современные лазеры могут генерировать импульсы длительностью, равной обратной ширине их спектра

. Это означает, что tког»tu и на всем временном протяжении импульса колебания светового поля можно считать согласованными. Такие импульсы называют спектрально ограниченными. Разумеется, интерференционная картина с этими импульсами, например, в рассмотренном нами клине будет той же, что и для излучения с той же величиной tког, но для которого tu>>tког. Объяснение отсутствия интерференционной модуляции при x>xинт (см. рис. 4) оказывается на этот раз очевидным: после разделения импульса на границе 1 на два импульса один из них, проходящий дополнительное расстояние Dl, попросту не встретится с другим, отраженным от границы 1, т.к.
.

Практическое значение когерентности света.

Почему временная когерентность - важное свойство света, и зачем в интерференционных экспериментах необходимо иметь высококогерентное излучение? Ответы на эти вопросы дадим, вновь обратившись к рассмотренному примеру интерференции в воздушном клине. На рис. 4г приведена картина искривления интерференционных полос при наличии на поверхности 2 клина впадины. Из рисунка понятно, что оптическим методом можно легко диагностировать качество поверхности 2, в частности, обнаруживая на ней царапины с шириной и глубиной порядка всего одной-двух длин волн (т.е. порядка одного микрона в поле излучения видимого диапазона). Именно в когерентном излучении реализуется интерференционная картина, представленная на рис. 4г. Из рисунка видно, что чем больше tког излучения, тем большую поверхность в одном эксперименте можно диагностировать. Явление интерференции в когерентном свете применяется, разумеется, не только для прецизионной диагностики качества поверхностей, но и в спектроскопии, метрологии, в экологических исследованиях и т.п.

Пространственная когерентность света.

Кроме временной когерентности важным свойством излучения является и его пространственная когерентность. Характеризуя временную когерентность излучения, мы обсуждали согласованность колебаний светового поля в некоторой точке пространства во временных интервалах, разделенных промежутком времени t. При рассмотрении пространственной когерентности анализируют согласованность колебаний светового поля в некотором интервале времени в разных точках пространства. Т.е. оценивается согласованность колебаний светового поля в точках P и P¢ поверхности S (рис. 3), перпендикулярной направлению распространения волны. Характеристикой пространственной когерентности считают половину максимального расстояния между P и P¢, для которого колебания в этих точках еще можно считать согласованными. Этот размер называют радиусом когерентности rког.

Согласованны колебания в P и P¢ или нет - экспериментально можно определить по наличию (или отсутствию) интерференционной картины в области пересечения сферических световых волн, вторичными источниками которых являются точки P и P¢. Такую интерференцию можно реализовать, например, закрыв поверхность S непрозрачным тонким экраном с малыми отверстиями в P и P¢ (схема Юнга [1]). Наличие светлых и темных полос на другом экране, размещенном для их наблюдения за отверстиями, говорит о согласованности колебаний поля излучения в точках P и P¢. Напомним, что не закрытые непрозрачным экраном участки волновой поверхности S могут рассматриваться как вторичные источники света в соответствии с эвристическим принципом Гюйгенса-Френеля, обоснованным в рамках строгой теории дифракции Кирхгофом [2].

Можно показать, что

, где j - угловой размер светящегося тела (см. рис. 3). Эту оценку несложно получить (см., например, [1,2]) учитывая, что элементарные излучатели с одного края светящегося объекта испускают свет не согласованно с элементарными излучателями другой части этого объекта. Радиус когерентности лазерного излучения может быть равным всему радиусу сечения лазерного пучка, а для солнечного света вблизи поверхности Земли он составляет всего десятки микрон. Измеряя rког далеких звезд, Майкельсон смог впервые определить их угловые размеры и оценить диаметры звезд [2].

Если угловые размеры светящегося тела настолько малы, что в данном эксперименте его можно считать материальной точкой, то излучение тела характеризуется полной пространственной когерентностью. Хотя временная когерентность при этом может быть лишь частичной. Именно такое предположение о большой величине rког мы сделали, моделируя интерференцию в клине при обсуждении характеристик света с частичной временной когерентностью. Поэтому подчеркнем, что параметры пространственной и временной когерентности характеризуют разные возможности для использования излучения в интерференционных экспериментах. Интегральной характеристикой когерентности света является объем когерентности

, т.е. объем пространства, внутри которого колебания светового поля волны являются согласованными.