Смекни!
smekni.com

Оптоинформатика (стр. 11 из 19)

, (2)

иллюстрированного на рис. 2а. В выражении (2) Е - световое поле вблизи атома, Е0 и j0 - амплитуда и начальная фаза колебаний поля, tц - длительность цуга.

Параметры w и tц волнового цуга или, как его еще называют, волнового пакета определяются типом атома. Каждому сорту атомов соответствует индивидуальный набор частот, с которыми эти атомы могут излучать. Феномен, заключающийся в том, что атом может испускать излучение не любой частоты, а лишь некоторой из дискретного и фиксированного для него набора в рамках классической физики не объясняется (его осмысление привело в начале прошлого века к развитию квантовых концепций). Длительность tц цуга кроме того, что определяется типом атома, может существенно зависеть и от взаимодействия излучающего атома с окружающими его атомами и молекулами. Характерная оценка величины tц, справедливая для атомов, например, газа в газоразрядных лампах, имеет порядок

с. Т.е. в волновом цуге излучения видимого диапазона содержится очень большое - порядка
- число периодов колебаний светового поля. На рис. 2а эти пропорции для наглядности и компактного представления временной структуры волнового цуга не соблюдены. Максимальная амплитуда волнового пакета E0 с классической точки зрения может быть любой и определяется начальным возбуждением атома.

За счет внешнего источника атом или молекула после испускания волнового пакета может получить новую порцию энергии. Например, в вышеупомянутых газоразрядных лампах такое возбуждение атомов возникает при их столкновениях с электронами разряда. Приобретенная порция энергии вновь высветится в виде излучения. На рис.2б представлены два волновых цуга, последовательно высветившихся одним атомом.

Таким образом, источником реального оптического излучения, как иллюстрирует рис.3, является некоторое макроскопическое тело (например, газоразрядная лампа), состоящее из колоссального числа испускающих сферические волны атомов (в 1см3 газа число элементарных излучателей

). В произвольно выбранной точке пространства P поле излучения Ер складывается из полей необозримого множества волновых цугов, распространившихся до этой точки от каждого испускающего электромагнитную волну атома тела. Суммарное поле не будет, разумеется, подобно представленному на рис. 1, гармоническим. На рис. 2в приведена одна из реализаций численного расчета временной зависимости поля Ер, являющегося суммой N волновых цугов, приходящих за время
(время свечения тела) в точку P в случайном порядке и отличающихся случайным образом величинами E0, tц и w. Различия в значениях последних двух параметров предполагались малыми. Т.е. на рисунке промоделирована ситуация, когда из линейчатого атомарного спектра выделяется (например, светофильтром) линия, соответствующая одной частоте из возможного для данных атомов набора. Такое излучение называют квазимонохроматическим и именно к нему обычно относят термин частично когерентное излучение. Представленной на рис. 2в реализации расчета соответствовало N=1000,
. Приведенная зависимость динамики случайного поля является типичной и качественно не меняется при увеличении N.

Рассмотрим важнейшие особенности временной зависимости поля частично когерентного излучения. Хотя Ер представляет собой случайным образом просуммированные поля огромного количества волновых пакетов, его временная структура в значительной степени сохраняет информацию о параметрах отдельных цугов. Из рис. 2в видно, что среднее значение “мгновенного” периода волны <Tмгн> квазимонохроматической волны, определяемого временными расстояниями между нулями поля, примерно то же, что и величина периода

волновых цугов от отдельных атомов. Как показывают численные расчеты, разброс значений этого “мгновенного” периода DTмгн тем больше, чем меньше длительности цугов tц, и справедлива пропорция DTмгн~
.

Для описания частично когерентного оптического излучения часто употребляют “спектральный язык”. Световое поле представляется в виде

(3)

т.е. интерпретируется как сумма (непрерывная) большого числа монохроматических компонент с амплитудами G(w) и частотами w, заполняющими некоторый континуум значений. Тогда выводы о параметрах частично когерентного излучения, приведенные выше на “временном языке”, прозвучат следующим образом. Среднее значение частоты излучения

определяется частотой испускаемых атомами волновых пакетов. Ширина спектра излучения, (ширина распределения G(w))
определяется длительностью отдельных волновых пакетов. Причем
, что можно показать не только численным моделированием, но и доказать аналитически (см., например, [1]). Поскольку обычно выполняется
, то
. Эти неравенства являются количественными критериями определения излучения как квазимонохроматического.

Как измерить время когерентности?

Чтобы определить промежуток времени, через который колебания частично когерентного света перестают быть согласованными, поставим следующий эксперимент. Направим это излучение на воздушный клин, как показано на рис. 4а, и будем наблюдать интерференцию в отраженном свете [1]. Т.е. для определения tког света, испускаемого макроскопическим телом, состоящим из огромного числа элементарных излучателей, поместим воздушный клин перпендикулярно направлению распространения излучения в окрестности точки P (см. рис. 3). Сфокусировав микроскоп или саккомодировав глаз на поверхности 1 клина, мы увидим перераспределение интенсивности излучения в виде чередующихся светлых и темных полос, параллельных его ребру. На рис. 4б и 4в представлены фотография картины интерференционных полос и зависимость интенсивности в интерференционной картине от поперечной координаты x, которые численно рассчитаны для случая света, иллюстрированного на рис. 2в.

Обсуждая интерференционную модуляцию излучения, напомним, что в оптике интенсивностью называют величину, пропорциональную квадрату поля, усредненного за промежуток времени много больший периода световых колебаний. Такое определение обусловлено усреднением квадрата поля излучения реальными фотоприемниками (например, глазом) вследствие их инерционности.

Интерференционная картина, наблюдаемая в воздушном клине в отраженном свете, обьясняется сложением на поверхности 1 полей двух волн: одной - отраженной от границы раздела сред 1, другой - от границы раздела 2. Это означает, что в рассматриваемом эксперименте в точке P и ее окрестности по сути суммируются (и квадратично усредняются) поле падающей световой волны с момента начала наблюдения t0 и поле этой же волны в той же области пространства с момента времени t0+t. Здесь t - время, необходимое той части излучения, которая отражается от границы 2, пройти дополнительное по сравнению с волной, отраженной от границы 1, расстояние, равное двойной толщине воздушного клина

, где a - угол клина (см. рис.4а). Там, где разность фаз складываемых полей

(4)

кратна 2p и неизменна в течение наблюдения, регистрируется максимум интенсивности (светлая полоса), а где она равна p, 3p, 5p и т.д. - минимум интенсивности (темная полоса). Слагаемое

в (4) обусловлено скачком фазы волны при отражении ее от оптически более плотной среды [1] на границе раздела 2.

Из рис. 4б и 4в видно, что при малом x наблюдается высококонтрастная интерференционная картина. Максимальное значение интенсивности в центре светлой полосы, практически равное

, через расстояние
сменяется почти нулем в центре темной полосы. Здесь Iоmp - интенсивность волн, отраженных от границ раздела сред 1 и 2. Такая пространственная зависимость интенсивности в интерференционной картине характерна для монохроматического излучения, что несложно проверить, суммируя и квадратично усредняя поля вида (1), отличающиеся разностью фаз (4), и учитывая, что
. Наличие глубокой модуляции интенсивности на поверхности клина, где он имеет малую толщину, говорит о том, что разность фаз колебаний суммируемых полей за время усреднения фотоприемником не меняется. Эти колебания когерентны. Если толщина клина большая и промежуток времени
, где с - скорость света, становится большим времени когерентности tког, то разность фаз колебаний суммируемых полей с течением времени хаотически изменяется. Усреднение по времени квадрата поля фотоприемником приводит при большом x к равномерности засветки поверхности клина с интенсивностью, которая равна простой сумме интенсивностей волн, отраженных от границ 1 и 2.