Смекни!
smekni.com

Химия высокомолекулярных соединений (стр. 20 из 34)

…−CH2−CH−… …−СН2−СН−…

ОН

+ О

ОН –Н2О

…−СН2−СН−… …−СН2−СН−…

Прямым синтезом не всегда удается получить полимеры пространственного строения. Поэтому синтезируют сначала линейный полимер, а затем из него получают пространственный. При этом можно регулировать частоту сетки и, соответственно, свойства конечного продукта.

Характерным примером таких макромолекулярных реакций является процесс вулканизации каучуков, идущий в присутствии ускорителей и активаторов. При взаимодействии серы с каучуком возникают сульфидные или дисульфидные «мостики» между его линейными макромолекулами. Образующийся пространственно структурированный продукт (резина) характеризуется повышенной твердостью и прочностью, нерастворимостью. Его пластические деформации уменьшаются, а высокопластичные – возрастают по сравнению с низкомолекулярным каучуком:

СН3 СН3 S

…−СН2−С=СН−СН2−… …−СН2−С−СН−СН2–…

+ nS s

s

…−СН2−С=СН−СН2−… …−СН2−С−СН−СН2−…

CH3 CH3 s

Если макромолекулы полимера содержат функциональные группы, способные реагировать друг с другом, реакция может протекать в двух направлениях – внутримолекулярно и межмолекулярно.

Направление реакции определяется условиями ее протекания и относительной устойчивостью образующихся внутримолекулярных и межмолекулярных связующих группировок. Таким образом, при макромолекулярных реакциях в отличие от полимераналогичных превращений макромолекулы вступают в реакцию как единое целое.

Характерной особенностью макромолекулярных реакций является резкое изменение структуры и свойств полимера, а иногда и степени полимеризации с образованием устойчивых единиц под воздействием ничтожно малых долей реагента. Пространственные полимеры, образующиеся в результате макромолекулярных реакций, широко распространены в природе (многие белки, лигнин и др.).

12.3. Деструкция полимеров

При эксплуатации или хранении полимеры стареют, что проявляется в неблагоприятном изменении комплекса их свойств. Старение полимеров может быть следствием как физических процессов, например самопроизвольной кристаллизации или «выпотевания» пластификатора, так и химических, из которых наибольшее значение имеют структурирование и деструкция по­лимера.

Деструкция полимера может протекать в результате разрыва или рас­пада (деполимеризации) основной цепи, отщепления или разрушения заместителей (боковых групп макромолекул).

Различают физическую и химическую деструкцию. Физическая деструкция протекает под действием теплоты, света, излучений высокой энергии, при механическом воздействии и соответственно называется термической, фотохимической, радиационной, механохимической деструкцией.

Химическая деструкция полимеров вызывается действием химических агентов – кислот, щелочей, воды, кислорода и др. При старении полимеров в реальных условиях деструкция обычно вызывается действием нескольких факторов, что, как правило, приводит к увеличению скорости этого процесса. По­скольку переработка, а часто и эксплуатация полимеров связаны с воздействием высоких температур, а при этом полимеры обычно находятся в контакте с воздухом, наибольшее значение имеют термическая и термоокислительная деструкция полимеров.

Термическая деструкция полимера протекает при высоких температурах в инертной атмосфере или в вакууме. Иногда этот процесс называют пиролизом. Термический распад наименее стойких полимеров – поливинилхлорида и полиметилметакрилата – начинается при 150 и 220 °С, а наиболее стойких – полисилоксана, политетрафторэтилена и полиимида – при 300, 400, 450 °С соответственно.

Классификация видов деструкции

Физическая 1. Термическая (горение, пиролиз…) 2. Механическая (разрушение полимеров под действием механического влияния) 3. Радиационная (разрушение воздействием радиационного излучения) 4. Фотохимическая (разрушение под действием ультрафиолетового излучения)

Химическая 1. Термоокисление (окисление и термический распад полимера) 2. Фотоокисление (окисление и разрушение, вызванное ультрафиолетовым излучением) 3. Гидролитическая (гидролиз природных биополимеров в организмах животных и человека в процессе белково-углеводного обмена)

Фотодеструкция приводит к инициированию процессов окис­ления, и, следовательно, к старению полимеров. С этой точки зрения данный процесс нежелателен. Ниже будут рассмотрены пути его предотвращения. Однако в некоторых случаях фотодеструкция полимеров используется с определенными практическими целями. В качестве примера можно указать разработку рецептур саморазлагающихся полимерных упаковочных материалов, а также использование фотохимических процессов сшивания и деструкции «фоточувствительных» полимеров при изготовлении электронных микросхем.

12.4. Стабилизация полимеров

Главная задача стабилизации полимеров заключается в изыскании эффективных ингибиторов (стабилизаторов), предотвращающих эти реакции.

В качестве ингибиторов окисления (антиоксидантов) используются соединения, относящиеся к классу вторичных ароматических аминов, фенолов, бисфенолов, фенолсульфидов, содержащие подвижный атом водорода. Молекулы ингибиторов (IH) обрывают кинетические цепи окисления, реагируя преимущественно с пероксидными радикалами. В результате образуются малореакционноспособные радикалы I˙, участвующие в основном в реакциях бимолекулярного обрыва. Для предотвращения зарождения новых цепей и вырожденного разветвления в полимер вводят сульфиды или фосфиты – вещества, взаимодействующие с гидропероксидами без генерирования радикалов. При совместном использовании таких веществ с антиоксидантами эффект увеличивается, а такие смеси называются синергическими. Введение в полимер антиоксидантов делает его устойчивым к комбинированному воздействию теплоты и кислорода воздуха в течение определенного времени, называемого индукционным периодом. Особенно необходима стабилизация каучуков и резин, поскольку макромоле­кулы этих полимеров содержат ненасыщенные связи, легко окисляющиеся уже при комнатной температуре.

В качестве фотостабилизаторов применяют неорганические и органические соединения, отражающие или поглощающие ультрафиолетовое излучение. К первым относятся неорганические пигменты, в первую очередь оксиды различных металлов. Так, оксид цинка является очень эффективным и экономически выгодным фотостабилизатором для области светового излучения с длиной волны от 240 до 380 нм.

Соединения, поглощающие ультрафиолетовое излучение, называются УФ-абсорберами. Эффективно поглощает ультрафиолетовый и видимый свет сажа, однако ее применение ограничено, так как она окрашивает полимер в черный цвет.

Первыми органическими светостабилизаторами, нашедшими широкое техническое применение, являются салицилаты. Наиболее известный из них – фенилсалицилат (салол) – широко применяется до настоящего времени. Введение 1 % салицилатов в ацетилцеллюлозные или полиэтиленовые пленки увеличивает срок их службы в условиях облучения солнечным светом от не­скольких месяцев до нескольких лет.

Функции фотостабилизаторов не ограничиваются поглощением ультрафиолетового света. В настоящее время установлено, что молекулы фотостабилизаторов с развитой системой сопряжения, в частности о-оксибензо­феноны и о-оксибензотриазолы, принимают энергию возбуждения от макромолекулы, поглотившей квант света, и тем самым предохраняют ее от разрушения.

Возможности термической стабилизации полимеров ограничены, так как в температурном интервале 250–300 °С распадаются не только полимеры, но и стабилизаторы. В этом отношении исключением является поливинилхлорид. Из-за чрезмерно малой термической стойкости и окрашивания на самой ранней стадии распада переработка и эксплуатация этого полимера без стабилизатора невозможна. Стабилизаторы поливинилхлорида должны удовлетворять следующим требованиям: связывать хлороводород, который катализирует процесс дегидрохлорирования, замещать аномально подвижные атомы хлора в основной цепи, разрушать полиеновые последовательности, вызывающие окраску полимера.