3. Прекращение роста и обрыв цепи. Вторая характерная особенность реакции поликонденсации – ее обратимый характер. При достижении состояния равновесия скорость образования полимера на каждой стадии взаимодействия мономеров равна скорости его разрушения (деструкции). Для получения полимеров с большой молекулярной массой необходимо нарушать это равновесие, удаляя выделяющийся в процессе поликонденсации низкомолекулярный продукт. Для этого или повышают температуру среды, или понижают давление. Первое необходимо для понижения вязкости реакционной среды, которая возрастает по мере течения реакции поликонденсации, а к снижению давления в реакторе прибегают, чтобы высокая температура не разрушала полимер. Таким образом, молекулярная масса полимера и скорость поликонденсации зависит от положения равновесия. Оно, в свою очередь, определяется концентрацией мономера, температурой, катализатором и т. д.
Повышение концентрации мономера ускоряет достижение равновесия и, следовательно, ускоряет поликонденсацию и получение полимера с максимальной молекулярной массой.
Повышение температуры реакции также ускоряет поликонденсацию. Что касается достижения равновесия, то это зависит от теплового эффекта реакции. Если реакция эндотермическая, то с повышением температуры молекулярная масса уменьшается. Так как тепловые эффекты реакций поликонденсации обычно невелики, то и температура реакции мало влияет на молекулярную массу полимера.
Катализаторы повышают скорость реакции и ускоряют достижение равновесия в системе. Если реакция доводится до равновесия, то катализаторы на молекулярную массу полимера не влияют.
Процесс поликонденсации может прекратиться по многим причинам: вследствие установившегося равновесия в системе, изменения структуры и нарушения эквивалентности функциональных групп, увеличения вязкости реакционной среды и связанного с этим уменьшения подвижности макромолекул. Продукты поликонденсации представляют собой сложную смесь. В ее состав могут входить фракции полимергомологов, низкомолекулярные соединения, некоторое количество не вступивших в поликонденсацию мономеров и даже побочных продуктов.
8.5.3. Сополиконденсация и блок-сополиконденсация
Для получения полимеров с разнообразными и полезными свойствами в реакцию поликонденсации вводят несколько различных по природе мономеров. Такая реакция поликонденсации называется сополиконденсацией или совместной поликонденсацией.
В результате образуются полимеры, макромолекулы которых построены из звеньев, представляющих собой остатки всех мономеров, взятых для проведения поликонденсации. В состав макромолекул эти остатки входят обычно в случайном сочетании, без определенного порядка. Для получения полимеров с регулярным расположением таких звеньев поступают следующим образом. Вначале из двух мономеров синтезируют сравнительно низкомолекулярные гомополимеры – блоки. Затем их соединяют между собой звеньями третьего мономера. Такой процесс называется блок-сополиконденсацией. Например, реакцию совместной поликонденсации диаминов с полиэфирами начинают с предварительной поликонденсации. При этом необходим некоторый избыток адипиновой кислоты. В результате образуются сравнительно низкомолекулярные блоки, имеющие на обоих концах макромолекулы карбоксильные группы:
(n + 1)HOOC−(CH2)4−COOH + nHO−(CH2)2−OH ®
® HO−(−OC−(CH2)4−COO−CH2−O−)n−OC−(CH2)4−COOH + 2nH2O
Добавляя затем гексаметилендиамин, «сшивают» эти блоки и получают блок-сополимер – полиэфирамид:
2OH−(−OC−(CH2)4COOCH2CH2O−)n−OC(CH2)4COOH + H2N−(CH2)6−NH2 HO−(−OC(CH2)4COOCH2CH2O−)n−OC(CH2)4CO−NH (CH2)6HO−(−OC(CH2)4COOCH2CH2O−)n−OC(CH2)4CO−NH
8.5.4. Способы проведения поликонденсации
Поликонденсация проводится несколькими способами: в расплаве, в растворе, на границе раздела фаз, в твердой и газообразной фазах. Поликонденсация в расплаве проводится тогда, когда исходные мономеры и полимер устойчивы к высоким температурам, при которых обычно проходит реакция (200–280 °С). По окончании поликонденсации выдавливают полимер в виде блока (ленты, полосы, прутка) и после охлаждения его измельчают. Преимущество способа – отсутствие растворителя, который замедляет реакцию и требует своего удаления после реакции и регенерации.
В растворе поликонденсацию можно проводить при более низких температурах, что является преимуществом этого способа.
Поликонденсация на границе раздела фаз заключается в том, что на границе раздела двух несмешивающихся жидкостей (например, бензина и воды) поликонденсация протекает мгновенно с образованием пленки полимера. По мере удаления полимера граница раздела фаз освобождается и поликонденсация продолжается.
Поликонденсация в твердой фазе изучена недостаточно. Она протекает с большой скоростью при температурах, близких к температурам плавления мономеров.
Поликонденсация в газообразной фазе осваивается в производственных условиях для получения мочевино-формальдегидных смол, при котором один из компонентов реакции – формальдегид находится в газообразном состоянии.
8.5.5. ВМС, получаемые реакцией поликонденсации
Эпоксидные полимеры – полимеры эпихлоргидрина глицерина и
4,4-дигидроксидифенилпропана
Высокие атмосферо- и водостойкие качества. Обладают инертностью ко многим химическим и агрессивным явлениям, проявляют высокие электроизоляционные свойства. Легко совмещаются с другими полимерами, образуя комопозиты с антикоррозионными свойствами.
Полиэфирные полимеры – образуются при взаимодействии гликолей или многоатомных спиртов с двухосновными кислотами или их ангидридами.
НО−(CH2)x−OH + HOOC−(CH2)y−COOH ® HO−[−(CH2)x−OCO−(CH2)y−COO−]z−H
Материалы на их основе обладают высокой атмосферо- и водостойкостью. Волокна не мнутся, не истираются, прочны. Используются при производстве белья, тканей, ковров, лаков, эмалей, грунтовок, материалов для внутренней отделки помещений.
Полиуретаны – полимеры ди- или полиизоцианатов с многоатомными спиртами.
nO=C=N−R−N=C=O + nHO−R¢−OH ® [−CONH−R−NHCO−O−R¢−O−]n
Высокие газо- и атмосферостойкие, тепло- и звукоизоляционные материалы, эластичные и каучукоподобные. Антикоррозионные лаки и клеи, пленкообразующие материалы в лакокрасочной промышленности, изоляционные плиты в строительстве, склеивание резины с металлом и т. д.
Фенолформальдегидные полимеры – продукты поликонденсации фенола или его производных с формальдегидом. Новолачные (линейные) термопластичны и растворимы, резит (пространственные), термореактивны нерастворимы, резитол – эластичные, резиноподобные соединения, набухающие в органических растворителях. Обладают высокой износо- и коррозионноустойчивостью, электроизоляторы, устойчивы к нагрузкам.
новолачная смола резольная смолаМочевино-формальдегидные полимеры – получают поликонденсацией мочевины и формальдегида.
CH2=О + Н2N−CO−NH2 HOCH2NH−CO−NHCH2OH …−NHCONCH2NHCONH−… CH2…−NHCONHCH2NHCO−… и т. д.
Светлоокрашены или бесцветны, светостойки, тверды, термостойки. Отделочные материалы, лаки, клеи, пористые и композиционные материалы.
Меламиноформальдегидные полимеры – продукты взаимодействия меламина с формальдегидом.
Высокие водо- и атмосферостойкие свойства, механически прочны при высокой температуре. В качестве композиционной добавки используются для производства прессматериалов, декоративных бумажно-слоистых пластиков, лаков, красок, водостойкой бумаги и др.
Полиамидные полимеры – продукт поликонденсации ω-аминокарбоновых кислот (см. стр. 50–51). Шелкоподобные, прочные, устойчивые к истиранию ткани.
Полиэфирные волокна (например, полиэтилентерефталатное) – лавсан, терилен, дакрон. Продукт реакции поликонденсации этиленгликоля и терефталевой кислоты. Не мнущееся прочное, устойчивое к истиранию волокно. Ткани на его основе применяются в производстве верхней и нижней одежды, ковровых покрытий (в смеси с шерстью).