Анионно-координационная полимеризация диенов
В зависимости от условий полимеризации в полимерной цепи изопрена могут быть обнаружены четыре типа изомерных звеньев:
|
Цифры в названиях изомерных звеньев обозначают номер атома углерода, входящего в основную цепь молекулы изопрена.
Впервые полимеризацию изопрена в присутствии катализатора – металлического натрия – осуществил в 1932 году С. В. Лебедев, что привело к созданию промышленности синтетического каучука в России. В 1954 году А. А. Коротков получил из изопрена стереорегулярный каучук, применив в качестве катализатора литийорганические соединения. При полимеризации на литии или литийорганических соединениях стереорегулярный 1,4-цис-полиизопрен образуется лишь в углеводородных средах. Это объясняется координацией мономера на полярном, но не диссоциированном активном центре −Сδ–−Lδ+, в результате чего мономерное звено принимает конфигурацию, соответствующую 1,4-цис-структуре:
|
Добавление всего лишь нескольких процентов электронодонорных соединений – эфира, тетрагидрофурана, алкиламинов и других веществ – резко изменяет микроструктуру образующегося полиизопрена – становится преобладающей 1,4-транс- (80–90 %) и 3,4-структура (10–20 %). Электронодорное соединение способствует поляризации связи С−Li до разделения на ионы:
δ– δ+ _
~CH2−Li + nR2O → ~CH2[Li(OR2)n]+
В этом случае микроструктуру цепи полимера определяет координация иона Li+ с концевым звеном макроиона, которое имеет аллильную структуру. В аллильной структуре p-электроны делокализованы и, следовательно, два крайних атома углерода по электронной плотности эквивалентны. Для карбаниона это выражается следующим образом:
|
Мономер может присоединяться как к первому, так и к третьему атому углерода, что приводит к 1,4-транс- или 3,4-структуре.
Полимеризация на катализаторах Циглера – Натта
В 1955 году немецкий химик Карл Циглер предложил каталитическую систему, состоящую из триэтилалюминия (С2Н5)3Al и хлорида титана TiCl4, для синтеза полиэтилена в мягких условиях – при температуре 50–80 °С и давлениях, не превышающих 1 МПа. Затем итальянский химик Джулио Натта использовал этот катализатор для получения кристаллизующихся полипропилена и полистирола. Для объяснения причины кристаллизации этих полимеров он впервые ввел понятие о стереорегулярных макромолекулах.
В настоящее время к группе катализаторов Циглера – Натта относят каталитические системы, образующиеся при взаимодействии органических соединений непереходных элементов I–III групп и солей переходных элементов IV–VIII групп. Известны гетерогенные и гомогенные катализаторы Циглера – Натта. На первых в основном получаются изотактические полимеры, на вторых могут быть получены также и синдиотактические.
Механизм анионно-координационной полимеризации в присутствии катализатора Циглера – Натта можно представить следующим образом. При взаимодействии Al(C2H5)3 и TiCl4 образуется активный комплекс:
комплекс
Выпавший из раствора TiCl3 адсорбируется поверхностью хлордиэтилалюминия, создавая центры активации, к которым присоединяются молекулы мономера путем внедрения между атомом алюминия и этильной группой. Все последующие акты присоединения мономеров протекают с удлинением углеродной цепи комплекса:
CH2=CH2
Cl C2H5 Cl C2H5
nH2C=CH2
Сl С2Н5
Cl (CH2CH2)n−C2H5
При распаде комплекса образуется смесь высокомолекулярных продуктов стереорегулярного строения:
8.2. Сополимеризация
Сополимеризация – процесс образования сополимеров совместной полимеризацией двух или нескольких различных по природе мономеров. Этим методом получают высокомолекулярные соединения с широким диапазоном физических и химических свойств. Например, в результате сополимеризации бутадиена с акрилонитрилом образуется бутадиеннитрильный каучук (СКН), обладающий высокой стойкостью к маслам и бензинам. Из него изготовляют уплотнительные прокладки для деталей, соприкасающихся с маслами и растворителями:
nCH2=CH−CH=CH2 + mCH2=CH ® [−CH2−CH=CH−CH2−CH2−CH–]n
Сополимеризацией изобутилена с изопреном получают бутилкаучук с высокой газонепроницаемостью:
CH3 CH3 CH3 CH3
На химическое состояние сополимеров в ионной сополимеризации оказывают влияние катализатор и растворитель.
При сополимеризации мономеры могут вести себя несколько иначе, чем при их раздельной полимеризации. В этом случае проявляется взаимное влияние различных мономеров, в результате чего реакционная способность одного из них сильно зависит от природы второго. Процесс сополимеризации еще более усложняется, если в реакции участвует несколько мономеров.
Сополимеризация широко используется в практике, поскольку является простым и очень эффективным методом модификации свойств крупнотоннажных полимеров. Наиболее распространена и изучена двухкомпонентная или бинарная сополимеризация.
Макромолекулы сополимеров состоят из элементарных звеньев всех мономеров, присутствующих в исходной реакционной смеси. Каждый мономер придает сополимеру, в состав которого он входит, свои свойства, при этом свойства сополимера не являются простой суммой свойств отдельных гомополимеров. Так, содержание небольшого количества стирола в цепях поливинилацетата повышает температуру стеклования последнего, устраняет свойство хладотекучести и увеличивает его поверхностную твердость.
Закономерности сополимеризации значительно сложнее, чем закономерности гомополимеризации. Если при гомополимеризации имеется один тип растущего радикала и один мономер, то при бинарной сополимеризации, в которой участвует всего два мономера, существует по крайней мере четыре типа растущих радикалов. Действительно, если два мономера А и В взаимодействуют со свободными радикалами R·, возникшими при распаде инициатора, образуются первичные радикалы, один из которых имеет концевое звено А, а второй – В: