Смекни!
smekni.com

Учебно-методическое пособие Основы физико-химических методов анализа. Часть 1 (стр. 4 из 13)

- Методические ошибки: Они зависят от особенностей применяемого метода анализа, например, от не вполне количественного протекания реакции, на которой основано определение, от частичной растворимости осадка, от осаждения вместе с ним посторонних примесей, от течения наряду с основной реакцией каких-либо побочных реакций, искажающих результаты титриметрического определения, от свойств примененного при титровании индикатора и т.д. Методические ошибки составляют наиболее серьезную причину искажения результатов количественных определений, устранить их трудно.

- Ошибки, зависящие от применяемых приборов и реактивов. Это ошибки, связанные с неравноплечностью или недостаточной точностью весов, с употреблением неповеренных разновесов или сосудов для определения объемов, ошибки, происходящие в результате загрязнения раствора продуктами разрушения стекла, из которого сделана применяемая при анализе посуда.

- Ошибки оперативные. Они происходят от неправильного или недостаточно тщательного выполнения аналитических операций: недостаточное промывание осадков, приводящее к постоянному завышению результатов.

- Ошибки индивидуальные, зависящие от индивидуальных особенностей аналитиков, например, от его неспособности точно улавливать момент окраски при титровании и т.д.

Последние три вида систематических ошибок могут быть учтены и сведены до минимальных величин.

Систематические ошибки повторяются при каждом измерении, так как они вызываются постоянными причинами. Поэтому они влияют на всю серию определений. Величина систематической ошибки характеризует правильность результатов анализа.

Когда результаты отклоняются от истинного значения на постоянную величину, такая систематическая ошибка называется постоянной ошибкой. Она может вызываться неправильной холостой пробой, а также химической или спектральной интерференцией.

Когда ошибки между измеренной и истинной концентрацией пропорциональны концентрации вещества, систематическая ошибка называется пропорциональной ошибкой. Частая причина возникновения пропорциональной ошибки — это ошибочная калибровка.

Обнаружение и предупреждение систематических ошибок представляет собой сложную задачу.

Систематическую погрешность проще всего выявить с помощью стандартных образцов. Такая проверка одновременно дает возможность испытать и методику, и инструмент измерения аналитического сигнала. Непременное условие применения стандартного образца в химическом анализе — это максимальная близость состава и свойств стандартного образца, и анализируемой пробы.

Оценка правильности результатов анализа — проблема значительно более трудная, чем оценка воспроизводимости. Для оценки воспроизводимости нам не надо иметь ничего, кроме серии параллельных результатов измерения. Для оценки же правильности необходимо сравнение результата измерения с истинным значением. Такое значение никогда не может быть известно точно.

Важнейшие способы получения информации о действительном значении содержания определяемого компонента в анализируемом образце состоят в следующем.

1. Данные независимого анализа. Образец анализируют повторно, используя другую аналитическую методику, о которой известно (из опыта рактического применения), что она не содержит систематической огрешности. При этом важно, чтобы такая методика была действительно независима от проверяемой, т.е. чтобы она по возможности принадлежала другому методу и не содержала общих операций пробоподготовки. Еще лучше, если такой сравнительный анализ проводят в другой лаборатории, особенно официально аккредитованной.

2. Способ "введено — найдено" (метод добавок). В этом случае аналитик сам готовит для анализа образец с известным содержанием определяемого компонента. Полученный результат ("найдено") сравнивают с заданным содержанием ("введено").

3. Использование стандартных образцов. В качестве объекта анализа выбирают подходящий СО, а данные о содержании определяемого компонента берут из паспорта СО.

Существует ряд специальных приемов, которые позволяют выявить, а во многих случаях и существенно снизить систематическую погрешность.

Одним из таких приемов служит способ варьирования размера пробы. В этом случае для анализа используют серию проб различного размера (например, несколько аликвот разного объема) и исследуют зависимость найденного содержания от размера пробы. Предположим, что методика анализа содержит систематическую погрешность А, которая постоянна и не зависит от размера пробы. Погрешность такого типа называется аддитивной. Ее влияние состоит в том, что она увеличивает или уменьшает измеряемое значение аналитического сигнала на одну и ту же постоянную величину. Таким образом, при наличии аддитивной систематической погрешности с увеличением объема аликвоты наблюдается закономерное изменение результата анализа — убывание либо возрастание в зависимости от знака А.

Однако не всякая систематическая погрешность является аддитивной. Существуют погрешности другого типа, величина которых прямо пропорциональна размеру пробы (или содержанию определяемого компонента). Такие погрешности называются мультипликативными. Они увеличивают или (чаще) уменьшают значение аналитического сигнала в одно и то же число раз, т.е. изменяют наклон градуировочной зависимости. Очевидно, что такие систематические погрешности описанный способ выявить не может. В то же время мультипликативные систематические погрешности можно значительно уменьшить с помощью специального способа градуировки, называемого способом добавок.

Рис. 4. Градуировка по способу добавок. 1 - систематическая погрешность отсутствует, 2 - наблюдается мультипликативная систематическая погрешность, 3- аддитивная систематическая погрешность

Основная цель способа добавок — беспечение максимально точного соответствия условий градуировки и собственно определения. При использовании способа добавок эти две операции совмещаются воедино: известные содержания определяемого компонента вводят как добавки непосредственно в анализируемый раствор и представляют градуировочную функцию в виде графика зависимости аналитического сигнала от концентрации добавки Ас (рис. 4). Содержание компонента в анализируемом растворе находят путем экстраполяции полученной зависимости на нулевое (или фоновое, если оно известно) значение аналитического сигнала. Легко видеть, что в этом случае даже при наличии мультипликативной погрешности (т.е. изменении тангенса угла наклона градуировочного графика) получается правильный результат (ср. кривые 1 и 2 рис.4). В то же время аддитивную систематическую погрешность способ добавок устранить не может (кривая 3 рис.4).

3.3. Измерение концентрации вещества в растворе методом градуировочного графика

Для измерения концентрации вещества в растворе необходимо предварительно выполнить ряд подготовительных операций в следующей последовательности:

выбор длины волны;

выбор кюветы;

построение градуировочного графика для данного вещества;

измерение концентрация вещества.

Выбор длины волны

Для достижения наименьшей погрешности в определении концентрации следует правильно выбрать длину волны, на которой будет выполняться измерение. Для этого по спектральной кривой раствора, выбрать такой участок, на котором выполняются следующие условия:

- оптическая плотность имеет максимальную величину;

- ход кривой примерно параллелен горизонтальной оси

т. е. оптическая плотность мало зависит от длины волны.

Длина волны, соответствующая этому участку, выбирается для измерения. Если для некоторых растворов второе условие не выполняется, то рабочая длина волны выбирается по первому условию.

Выбор кюветы

При определении концентрации вещества в растворе необходимо сделать правильный выбор кюветы. Абсолютная погрешность измерения коэффициента пропускания не превышает 0,5%. Относительная погрешность измерения оптической плотности раствора будет различной и достигает минимума при значении оптической плотности 0,4.

Поэтому при работе на фотометре рекомендуется путем соответствующего выбора длины кювет работать вблизи указанного значения оптической плотности, например, в пределах от 0,2 до 0,8. При работе на приборе работайте вблизи указанного значения оптической плотности.

Если раствор интенсивно окрашен (темный), пользуйтесь кюветами с малой рабочей длиной (10 мм).

В случае слабо окрашенных растворов работайте с кюветами с большей рабочей длиной (50 мм).

В предварительно подобранную кювету налейте раствор и измерьте его оптическую плотность, введя в ход лучей соответствующий для данного раствора светофильтр. При измерении ряда растворов кювету заполните раствором средней концентрации.

Если полученное значение оптической плотности составляет примерно 0,2—0,8, то данную кювету выбирайте для работы с этим раствором. В том случае, когда это не выполняется, испробуйте кювету другой рабочей длины.

Построение градуировочного графика

Построение градуировочного графика проводить следующим образом. Приготовить ряд растворов данного вещества с известными концентрациями, охватывающими область возможных изменений концентраций этого вещества в исследуемом растворе.

Измерить оптические плотности всех растворов и построить градуировочный график, откладывая по горизонтальной оси известные концентрации, а по вертикальной — соответствующие им значения оптической плотности, рассчитанные по методу наименьших квадратов.

Следует убедиться в том, что зависимость концентрации от оптической плотности — линейная (по критерию Фишера), т. е. выражается на графике прямой линией.