Кроме того, астрология, алхимия, ятрохимия, натуральная магия представлявшие собой промежуточное звено между натурфилософией и техническими ремеслами способствовали разрушению созерцательности и переходу к опытной науке. Фактическое ограничение рациональности за счет введения требования оценки практической пригодности идеальных объектов, через экспериментальную проверку, происходит только в XVII веке.
В XVI-XVII веках наука как система знания приобретает основные черты, отличающие её современный образ - строит математические модели изучаемых явлений, сравнивает их с опытным материалом, проводит рассуждения посредством мысленного эксперимента (И. Кеплер, X. Гюйгенс, Г. Галилей, И. Ньютон). Открытие законов механики означало подлинно революционный переворот, который состоял в переходе от натурфилософских догадок и гипотез о "скрытых" качествах и спекулятивных измышлений к точному экспериментальному естествознанию, в котором все предложения, гипотезы и теоретические построения проверялись наблюдением и опытом. Поскольку в механике отвлекаются от качественных изменений тел, постольку для анализа можно было широко пользоваться математическими абстракциями и созданным самим Ньютоном и одновременно Лейбницем анализом бесконечно малых. Благодаря этому изучение механических процессов было сведено к точному математическому описанию. Суть научно-теоретического мышления начинает связываться с поиском предметов-посредников, видоизменением наблюдаемых условий, ассимиляцией эмпирического материала и созданием иной научной предметности, не встречающейся в готовом виде. Теоретическая идеализация, теоретический конструкт становится постоянным членом в арсенале средств естествознания.
В это же время начинается формирование науки как социального института - признается социальный статус науки (в 1660 г. основывается Лондонское Королевское общество, в 1666 г. Парижская Академия наук)'9. Но профессией наука становится только в
" В 1603 г. в Риме создана Academia dei Lincei, которая способствовала разработке галилеевского учения, но после отречения Галилея прекратившая работу в области физики как слишком опасную. Само создание этих академий и обществ свидетельствует о необходимости организации новых научных институтов, организующих познавательную деятельность ученых. В XVI - XVII вв. большинство ученых состояли членами научных академий и обществ (Лейман ИИ. Наука как социальный институт. Л., 1971. С.107).23
конце первой трети XIX века, после реформ университетского образования В. Гумболь-да, приведших к совмещению исследовательской деятельности и высшего образования, после появления "общественного заказа" на специалистов практиков в области права, медицины, инженерного дела, которыми возможно было стать, только приобретя специальное образование, передаваемое ученым-профессионалом.
И, наконец, наука становится фактором общественного прогресса в XX веке. Современная наука характеризуется следующими особенностями. Резким ростом количества ученых: на рубеже XVIII-XIX века - 10 тысяч, в 1900 г. - 100 тысяч, конец XX века - свыше 5 миллионов. Ростом научной информации: в XX веке научная информация удваивается за 10-15 лет. Сочетание тенденций специализации и междисциплинарного синтеза: в структуру науки входит около 15 тысяч дисциплин. Превращением научной деятельности в профессию: миллионы ученых работают в специальных научных институтах, лабораториях, экспертных комиссиях и советах. Наука стала непосредственной производительной силой, важнейшим фактором культурного развития.
Динамика развития научного знания влияет на рефлексивные процессы в научном сообществе и способствует смене доминирующих образов науки, отражающих представления ученых о структуре науки, её компонентах и методах. Образ науки — это определенная идеально-типологическая конструкция, присутствующая в рефлексии ученых, которую нельзя соотнести с тем или иным этапом развития науки.20 Типология образов науки строится не, сколько на соответствии с историей развития научного знания, столько с типом эталонной науки, на которую ориентируется ученый в своей рефлексии о смысле научной деятельности, её функциях и задачах. Если в качестве эталона научного знания рассматривается математика, то формируется логицисткий образ науки, если — физика, то физикали-стский образ науки.
Логшшстский образ науки | Физикалистский образ науки | |
1. Трактовка науки | Рассматривается как созерцание вечного и необходимого, как понимание сущности, сфера всеобщего | Понимается инструменталист-ски, как практическое использование гипотетического условно-значимого |
2. Отвечает на вопросы | «Что» и «Почему» | «как» |
3. Основания науки | Во всеобщих принципах, в истинах разума | В эмпирическом базисе (формируется в эксперименте, наблюдении) |
4. Структура научного знания | Строго дедуктивная система, исключает субъекта, недопускает изложение путей научного поиска | Гипотетико-дедуктивная система, в которой активно действует субъект |
5. Задача научного познания | Объяснение явления, выявление его сущности и нахождение причин, объясняющих его существование и функционирование | Описание фактического данного в восприятии и опыте |
6. Критерии научности | В соответствии высшим принципам или в самоочевидности принимаемых основоположений | В соответствии эксперименту |
24
7. Связь между тео- | Гипотеза рассматривается как | Теоретическое знание имеет |
рией и гипотезой | предварительная ступень в раз- | гипотетический характер, тео- |
витии научного знания, а тео- | рия - это сложная, логически | |
рия трактуется как фиксирова- | расчлененная гипотеза или | |
ние истинного результата и за- | комплекс гипотез | |
вершение познавательного | ||
процесса |
1.2.3. Развитие науки и научная картина мира
Отечественные эпистемологи (B.C. Степин, Л.Ф. Кузнецова, В.В.Ильин) выделяют три этапа в развитии науки, и соответствующие им научные картины мира. Научная картина мира - это форма теоретического знания, представляющая предмет исследования соответственно определенному историческому этапу развития науки. Это такая форма интеграции знания, в которой синтезируется, схематизируясь, конкретное знаиие, полученное в разных областях научного поиска. Реально в науке существует набор частнонаучных образов определенных фрагментов мира (физическая, химическая, биологическая картина реальности), которые на базе философии синтезируются в единую картину мира. Переход от одного этапа науки к другому, и, соответственно, изменения в научной картине мира происходят входе научных революций.
B.C. Степин, представляя динамику естественнонаучного знания, выделил четыре научных революции. Первой была революция XVII века, ознаменовавшей становление классического естествознания. И. Кеплер, Г. Галилей и И. Ньютон сформулировали законы механики (закон всемирного тяготения, закон орбитального движения планет и закон свободного падения всех земных тел, которые составили единую механику для всех небесных и земных тел), и перешли к экспериментальному изучению природы, заложили основы классического естествознания и классической рациональности. Законы механики базировались на отвлечении от качественных изменений тел и концентрировались на описании их движения, что позволяло свести изучение механических процессов к их точному математическому описанию. Классическая научная рациональность при теоретическом описании объекта стремиться исключить все, что относится к субъекту, средствам и операциям его деятельности. Классическая научная рациональность обеспечивала изучение преимущественно малых систем. Идеалом познавательной деятельности было построение абсолютной, истинной картины природы. Присутствовала ориентация на поиск очевидных, наглядных, " вытекающих из опыта" онтологических принципов, на основании которых можно строить теории, объясняющие и предсказывающие опытные факты. Доминировало механистическое понимание природы. Объяснение, по существу, было поиском механических причин и субстанций (носителей сил, которые детерминируют наблюдаемые явления), редуцирующее знание к фундаментальным принципам и представлениям механики.