Во-вторых, можно абстрагироваться от некоторых отношений изучаемых объектов друг к другу. С помощью такой абстракции образуется, например, понятие идеального газа. Абстрагируясь от взаимодействия между молекулами реального газа, и рассматривая его частицы как обладающие лишь кинетической энергией и взаимодействующие только при соударении, мы получаем идеализированный объект — идеальный газ. В гуманитарных науках при изучении отдельных сторон жизни социума, отдельных общественных явлений и институтов, социальных групп абстрагируются от взаимоотношений этих сторон, явлений, групп с другими элементами жизни общества.
В-третьих, возможно приписывать реальным объектам отсугствующие у них свойства или мыслить присущие им свойства в некотором предельном значении. Таким образом, например, в оптике, усиливая присущие всем телам свойства отражения и поглощения падающей на них энергии, образуются особые идеализированные объекты — абсолютно черное тело и идеальное зеркало.
В-четвертых, идеализированным объектом может стать любой реальный предмет, который мыслится в несуществующих, идеальных условиях. Именно таким образом возникает понятие инерции. Представив идеальных условия, в которых на движущееся тело не оказывается внешних воздействий, получается, что оно будет двигаться бесконечно долго и при этом равномерно и прямолинейно.
Именно идеализированный объект делает возможным создание теории. Научные теории, прежде всего, отличаются положенными в их основу идеализированными объектами. Понятия и утверждения теории вводятся и формулируются как характеристики ее идеализированного объекта. Основные свойства идеализированного объекта описываются системой фундаментальных уравнений теории. Различие идеализированных объектов теорий приводит к тому, что каждая гипотетико-дедуктивная теория имеет свою специфическую систему фундаментальных уравнений. В классической механике мы имеем дело с уравнениями Ньютона, в электродинамике — с уравнениями Максвелла, в теории относительности — с уравнениями Эйнштейна и т. п. Идеализированный объект дает интерпретацию понятий и уравнений теории. Уточнение уравнений теории, их опытное подтверждение и коррекция ведут к уточнению идеализированного объекта или даже к его изменению. Замена идеализированного объекта теории означает переинтерпретацию основных уравнений теории.
Закон является базовым элементом теории, выражающим сущность изучаемого объекта в его целостности и конкретности. Закон - это связь, которая характеризуется основными признаками существенного отношения: всеобщностью, необходимостью, повторяемостью, устойчивостью. Стабильность, инвариантность законов соотносится с конкретными условиями их действия, изменение которых порождает новую сферу их действия с их соответствующей модификацией. Любой закон есть конкретно-исторический феномен, с изменением условий он трансформируется, и меняются формы его использования.
Научный закон - форма организации научного знания, состоящая в формулировке всеобщих утверждений о свойствах и отношениях исследуемой предметной области. Научные законы в зависимости от выбранных оснований можно классифицировать следующим образом. По описываемым формам движения материи выделяют три группы законов: в неорганической природе (механические, физические, химические, геологические); в живой природе (биологические, экологические); в обществе (исторические, экономические, социальные). По структуре отношения детерминаций выделяют динамические законы (управляющие поведением индивидуального объекта и позволяющего установить однозначную связь его состояний) и вероятностно-статистические законы (управляющие поведением больших совокупностей объектов и позволяющих делать лишь вероятностные выводы относительно поведения индивидуального -объекта). В зависимости от типа детерминации законы подразделяются на причинные (фиксируемая в них связь имеет генетический характер) и непричинные (делятся на функциональные, структурные, законы корреляции). По степени общности законы делятся на частные (управляют поведением качественно ограниченной сферы объектов), общие (характеризуют поведение объектов, принадлежащих к широкой предметной области) и всеобщие (действуют во всех сферах действительности). По тому на каком уровне познания формулируются, выделяют эмпирические и теоретические законы. Эмпирические законы - это наиболее развитая форма вероятностного эмпирического знания, с помощью индуктивных методов фиксирующего количественные и иные зависимости, полученные опытным путем, при сопоставлении фактов наблюдения и эксперимента. Теоретический закон - форма достоверного знания, которое формулируется
Зотов А.Ф. Структура научного мышления. М., 1973. С. 131.
32
33
с помощью математических абстракций, а также в результате теоретических рассуждений, как следствие мысленного эксперимента над идеализированными объектами.
Теоретическую конструкцию образуют иерархии законов, сформулированных относительно одной и той же области действительности, либо на разных ступенях развития научного знания (представляющих собой фиксацию проникновения в механизм какого-либо явления, что ведет переходу от частных обобщений к более фундаментальным), либо в определенный период развития науки (эмпирические правила, научные принципы, частные законы). Адаптивно-биологический смысл введения категории "научный закон" в структуру научного знания состоит в возможности моделирования, "сжатия" повторяющихся, сходных свойств и отношений в краткой логической форме.
В зависимости от выбранного основания выделяют следующие типы теорий: описательные, математизированные, дедуктивные, индуктивные, фундаментальные и прикладные, формальные и содержательные, объясняющие и описывающие, физические, химические, социологические и психологические и т. д. А. Эйнтшейн различал в физике два основных типа теорий — конструктивные и фундаментальные. Большинство физических теорий, по его мнению, являются конструктивными, т. е. их задачей является построение картины сложных явлений на основе некоторых относительно простых предположений (такова, например, кинетическая теория газов). Исходным пунктом и основой фундаментальных теорий являются не гипотетические положения, а эмпирически найденные общие свойства явлений, принципы, из которых следуют математически сформулированные критерии, имеющие всеобщую применимость (такова теория относительности). В фундаментальных теориях используется не синтетический, а аналитический метод. К достоинствам конструктивных теорий Эйнштейн относил их законченность, гибкость и ясность. Достоинствами фундаментальных теорий он считал их логическое совершенство и надежность исходных положений.
Основными функциями теории являются следующие. Синтетическая функция - в теории объединяются отдельные достоверные знания в единую, целостную систему. Объяснительная фушащя — теория представляет причинные зависимости, многообразие связей явления, существенные характеристики его генеза и развития. Методологическая функция - на основании теории формируются методы, способы и приемы исследовательской деятельности. Предсказательная функция - на основании теоретических представлений о "наличном" состоянии известных явлений делаются выводы о существовании неизвестных ранее фактов, объектов или их свойств, связей между явлениями. Практическая функция -конечная цель любой теории практическое применение.
О механизме развития теорий емко высказался П.Л. Капица: " Наиболее мощные толчки в развитии теории мы наблюдаем тогда, когда удается найти неожиданные экспериментальные факты, которые противоречат установившимся взглядам. Если такое противоречие удается довести до большей степени остроты, то теория должна измениться и, следовательно, развиться. Таким образом, основным двигателем развития физики, как всякой другой науки, является отыскание противоречий"26.
Признаком, указывающим на сформированность и зрелость теории, является рефлексия ученых, разделяющих её концептуальные положения, по поводу методов и принципов составляющих структуру теории, а так же возможности её дальнейшего развития и применения.
Структура научной дисциплины образуется теориями, принципиально ограниченными в своем интенсивном и экстенсивном развитии. Её единство выражается не в редукции теоретического знания (например, тепловые явления, описываемые статистической механикой, несводимы к механическим), а в сложном взаимоотношении между различными системами абстракций. Как бы не были велики успехи дисциплины в интеграции охватываемых ею знаний, она состоит из нескольких научных областей, специфика которых отражается относительно замкнутыми системами понятий и принципов, составляющих тео-
Капица П.Л. Эксперимент. Теория. Практика. М, 1987. С. 18.34
рии, которые объединяют соответствующий данной предметной области эмпирический материал. В. Гейзенберг отмечал, что в современной физике существует четыре фундаментальных замкнутых непротиворечивых теории: классическая механика, термодинамика, электродинамика, квантовая механика. Каждая в своей области приложимости лучшим образом описывает реальность.