Если ось вращения перпендикулярна П2, то на П2 он будет проецироваться в виде окружности, а на П1 и П3 в виде прямоугольников.
Аналогичное рассуждение при положении оси вращения, перпендикулярном П3 (рис.8.3).
Рис.8.3
Цилиндр Ф пересекается с плоскостями Р ,S ,L и Г (рис.8.3).
2 ГПЗ, 1 алгоритм (Модуль №3)
Ф ^ П3
Р, S, L, Г ^ П2
Ф Ç Р = а (6 5 и
)Ф ^ П3Þ Ф3 = а3 (63 =53 и = )
а2и а1 строятся по принадлежности к поверхности Ф.
Ф Ç S = b (5 4 3 )Ф Ç S = с (2 3 ) Рассуждения аналогичны предыдущему.
Ф Г = d (12 и
Задачи на рисунках 8.4, 8.5, 8.6 решаются аналогично задаче на рис.8.3, так как цилиндр
везде профильно-проецирующий, а отверстия - поверхности проецирующие относительно
П1 - 2ГПЗ, 1 алгоритм (Модуль №3).
Рис. 8.4
Рис. 8.5
Рис. 8.6
Если оба цилиндра имеют одинаковые диаметры (рис.8.7), то линиями пересечения их будут два эллипса (теорема Монжа, модуль №3). Если оси вращения этих цилиндров лежат в плоскости, параллельной одной из плоскостей проекций, то на эту плоскость эллипсы будут проецироваться в виде пересекающихся отрезков прямых.
Рис. 8.7
Задачи на рисунках 8.8, 8.9, 8.10, 8.11, 8.12 -2 ГПЗ (модуль №3) решаются по 2 алгоритму, так как поверхность конуса не может быть проецирующей, а секущие плоскости везде фронтально-проецирующие.
Рис. 8.8 | Рис. 8.9 | ||
Рис. 8.10 | Рис.8.11 | Рис.8.12 |
На рисунке 8.13 изображен конус вращения (тело), пересеченный двумя фронтально-проецирующими плоскостями Г и L. Линии пересечения строят по 2 алгоритму.
На рисунке 8.14 поверхность конуса вращения пересекается с поверхностью профильно-проецирующего цилиндра.
2 ГПЗ, 2 алгоритм решения (модуль №3), то есть профильная проекция линии пересечения есть на чертеже, она совпадает с профильной проекцией цилиндра. Две другие проекции линии пересечения строят по принадлежности конусу вращения.
Рис.8.13
Рис.8.14Поверхность сферы пересекается с плоскостью и со всеми поверхностями вращения с ней, по окружностям. Если эти окружности параллельны плоскостям проекций, то проецируются на них в окружность натуральной величины, а если не параллельны, то в виде эллипса.
Если оси вращения поверхностей пересекаются и параллельны одной из плоскостей проекций, то на эту плоскость все линии пересечения - окружности проецируются в виде отрезков прямых.
На рис. 8.15 - сфера, Г - плоскость, L - цилиндр, Ф - усеченный конус.
S Ç Г =а - окружность;
S Ç L =b - окружность;
S Ç Ф =с - окружность.
Рис.8.15
Так как оси вращения всех пересекающихся поверхностей параллельны П2 , то все линии пересечения - окружности на П2 проецируются в отрезки прямых.
На П1 : окружность "а" проецируется в истинную величину так как параллельна ей; окружность "b" проецируется в отрезок прямой, так как параллельна П3 ; окружность"с" проецируется в виде эллипса, который строится по принадлежности сфере.
Сначала строятся точки 1, 7 и 4, которые определяют малую и большую оси эллипса. Затем строит точку 5, как лежащую на экваторе сферы.
Для остальных точек (произвольных) проводят окружности (параллели) на поверхности сферы и по принадлежности им определяются горизонтальные проекции точек, лежащих на них.
Задача 4 .Построить три вида детали с необходимыми разрезами и нанести размеры.
Задача 5. Построить три вида детали и выполнить необходимые разрезы.
Комплексный чертеж, составленный из двух или трех проекций, обладая свойствами обратимости, простоты и др., вместе с тем имеет существенный недостаток: ему недостает наглядности. Поэтому, желая дать более наглядное представление о предмете, наряду с комплексным чертежом приводят аксонометрический, широко используемый при описании конструкций изделий, в руководствах по эксплуатации, в схемах сборки, для пояснений чертежей машин, механизмов и их деталей.
Сравните два изображения - ортогональный чертеж и аксонометрический одной и той же модели. На каком изображении легче прочитать форму? Конечно на аксонометрическом изображении. (рис.10.1)
Рис.10.1
Сущность аксонометрического проецирования состоит в том, что геометрическая фигура вместе с осями прямоугольных координат, к которым она отнесена в пространстве, параллельно проецируется на некоторую плоскость проекций, называемую аксонометрическая плоскость проекций, или картинная плоскость.
Если отложить на осях координат x,y и z отрезок l (lx,ly,lz) и спроецировать на плоскость П¢ , то получим аксонометрические оси и на них отрезки l'x, l'y, l'z (рис.10.2)
Рис.10.2
lx, ly, lz- натуральные масштабы.
l = lx = ly = lz
l'x, l'y, l'z - аксонометрические масштабы.
Полученную совокупность проекций на П¢ называют аксонометрией.
Отношение длины аксонометрических масштабных отрезков к длине натуральных масштабных отрезков называют показателем или коэффициентом искажения по осям, которые обозначаются Кx, Ky, Kz.
Kx =
;Ky=
;Kz=
Виды аксонометрических изображений зависят:
1. От направления проецирующих лучей (они могут быть перпендикулярны П' - тогда аксонометрия будет называться ортогональной (прямоугольной) или расположены под углом не равным 90°- косоугольная аксонометрия).
2. От положения осей координат к аксонометрической плоскости.
Здесь возможны три случая: когда все три оси координат составляют с аксонометрической плоскостью проекций некоторые острые углы (равные и неравные) и когда одна или две оси ей параллельны.