Смекни!
smekni.com

Проекционное черчение, аксонометрия (стр. 5 из 8)

Если ось вращения перпендикулярна П2, то на П2 он будет проецироваться в виде окружности, а на П1 и П3 в виде прямоугольников.

Аналогичное рассуждение при положении оси вращения, перпендикулярном П3 (рис.8.3).

Рис.8.3

Цилиндр Ф пересекается с плоскостями Р ,S ,L и Г (рис.8.3).

2 ГПЗ, 1 алгоритм (Модуль №3)

Ф ^ П3

Р, S, L, Г ^ П2

Ф Ç Р = а (6 5 и

)

Ф ^ П3Þ Ф3 = а3 (63 =53 и

=
)

а2и а1 строятся по принадлежности к поверхности Ф.

Ф Ç S = b (5 4 3
)

Ф Ç S = с (2 3

) Рассуждения аналогичны предыдущему.

Ф Г = d (12 и

Задачи на рисунках 8.4, 8.5, 8.6 решаются аналогично задаче на рис.8.3, так как цилиндр

везде профильно-проецирующий, а отверстия - поверхности проецирующие относительно

П1 - 2ГПЗ, 1 алгоритм (Модуль №3).

Рис. 8.4

Рис. 8.5

Рис. 8.6

Если оба цилиндра имеют одинаковые диаметры (рис.8.7), то линиями пересечения их будут два эллипса (теорема Монжа, модуль №3). Если оси вращения этих цилиндров лежат в плоскости, параллельной одной из плоскостей проекций, то на эту плоскость эллипсы будут проецироваться в виде пересекающихся отрезков прямых.

Рис. 8.7

8.3.2.Конус вращения

Задачи на рисунках 8.8, 8.9, 8.10, 8.11, 8.12 -2 ГПЗ (модуль №3) решаются по 2 алгоритму, так как поверхность конуса не может быть проецирующей, а секущие плоскости везде фронтально-проецирующие.

Рис. 8.8

Рис. 8.9

Рис. 8.10

Рис.8.11

Рис.8.12

На рисунке 8.13 изображен конус вращения (тело), пересеченный двумя фронтально-проецирующими плоскостями Г и L. Линии пересечения строят по 2 алгоритму.

На рисунке 8.14 поверхность конуса вращения пересекается с поверхностью профильно-проецирующего цилиндра.

2 ГПЗ, 2 алгоритм решения (модуль №3), то есть профильная проекция линии пересечения есть на чертеже, она совпадает с профильной проекцией цилиндра. Две другие проекции линии пересечения строят по принадлежности конусу вращения.

Рис.8.13

Рис.8.14

8.3.3. Сфера.

Поверхность сферы пересекается с плоскостью и со всеми поверхностями вращения с ней, по окружностям. Если эти окружности параллельны плоскостям проекций, то проецируются на них в окружность натуральной величины, а если не параллельны, то в виде эллипса.

Если оси вращения поверхностей пересекаются и параллельны одной из плоскостей проекций, то на эту плоскость все линии пересечения - окружности проецируются в виде отрезков прямых.

На рис. 8.15 - сфера, Г - плоскость, L - цилиндр, Ф - усеченный конус.

S Ç Г =а - окружность;

S Ç L =b - окружность;

S Ç Ф =с - окружность.

Рис.8.15

Так как оси вращения всех пересекающихся поверхностей параллельны П2 , то все линии пересечения - окружности на П2 проецируются в отрезки прямых.

На П1 : окружность "а" проецируется в истинную величину так как параллельна ей; окружность "b" проецируется в отрезок прямой, так как параллельна П3 ; окружность"с" проецируется в виде эллипса, который строится по принадлежности сфере.

Сначала строятся точки 1, 7 и 4, которые определяют малую и большую оси эллипса. Затем строит точку 5, как лежащую на экваторе сферы.

Для остальных точек (произвольных) проводят окружности (параллели) на поверхности сферы и по принадлежности им определяются горизонтальные проекции точек, лежащих на них.

9. Примеры выполнения заданий.

Задача 4 .Построить три вида детали с необходимыми разрезами и нанести размеры.

Задача 5. Построить три вида детали и выполнить необходимые разрезы.

10.Аксонометрия

10.1. Краткие теоретические сведения об аксонометрических проекциях

Комплексный чертеж, составленный из двух или трех проекций, обладая свойствами обратимости, простоты и др., вместе с тем имеет существенный недостаток: ему недостает наглядности. Поэтому, желая дать более наглядное представление о предмете, наряду с комплексным чертежом приводят аксонометрический, широко используемый при описании конструкций изделий, в руководствах по эксплуатации, в схемах сборки, для пояснений чертежей машин, механизмов и их деталей.

Сравните два изображения - ортогональный чертеж и аксонометрический одной и той же модели. На каком изображении легче прочитать форму? Конечно на аксонометрическом изображении. (рис.10.1)

Рис.10.1

Сущность аксонометрического проецирования состоит в том, что геометрическая фигура вместе с осями прямоугольных координат, к которым она отнесена в пространстве, параллельно проецируется на некоторую плоскость проекций, называемую аксонометрическая плоскость проекций, или картинная плоскость.

Если отложить на осях координат x,y и z отрезок l (lx,ly,lz) и спроецировать на плоскость П¢ , то получим аксонометрические оси и на них отрезки l'x, l'y, l'z (рис.10.2)

Рис.10.2

lx, ly, lz- натуральные масштабы.

l = lx = ly = lz

l'x, l'y, l'z - аксонометрические масштабы.

Полученную совокупность проекций на П¢ называют аксонометрией.

Отношение длины аксонометрических масштабных отрезков к длине натуральных масштабных отрезков называют показателем или коэффициентом искажения по осям, которые обозначаются Кx, Ky, Kz.

Kx =

;

Ky=

;

Kz=

Виды аксонометрических изображений зависят:

1. От направления проецирующих лучей (они могут быть перпендикулярны П' - тогда аксонометрия будет называться ортогональной (прямоугольной) или расположены под углом не равным 90°- косоугольная аксонометрия).

2. От положения осей координат к аксонометрической плоскости.

Здесь возможны три случая: когда все три оси координат составляют с аксонометрической плоскостью проекций некоторые острые углы (равные и неравные) и когда одна или две оси ей параллельны.