Применяемость рассматриваемой методологии для проектирования организаций ограничена ориентацией на специалистов высокой квалификации, владеющих инструментарием создания и использования математических конструктов, осуществляемого в течение последних трех десятков лет научным коллективом, возглавляемым С.П. Никаноровым. В настоящее время имеется несколько сотен конструктов и набор методов оперирования ими.
К сожалению, для реализации этой методологии при проектировании и создании конкретных систем в те годы не были разработаны детальный технологический проект и полная инструментальная система. Для этого потребовалось бы задействовать мощные организации, специализирующиеся на разработке информационно-программного обеспечения, что было невозможно без серьезной государственной поддержки. Когда-то академик В.М.Глушков говорил, что для создания общегосударственной автоматизированной системы (ОГАС) необходимо финансирование, соизмеримое с финансированием космических исследований или атомной промышленности. Силами сравнительно небольшого коллектива специалистов был разработан информационно-программный инструментарий для автоматизированной поддержки формирования математических метамоделей предметных областей с использованием накапливаемой базы конструктов. Были созданы автоматизированная система [4:1987;5:1997], обеспечившая запросный режим и выполнение операций синтеза, порождения, визуализации и т.д., синтаксический и семантический анализаторы, а также лингвистический интерпретатор родов структур. Дальнейшее развитие инструментария ориентировалось на поддержку процесса проектирования организационных процедур и форм документов.
Рассматривая эту методологию с современных позиций, видно, что в ней недостаточно внимания уделялось непосредственному, конкретному моделированию и развитию действующих организаций в рамках теорий производственных и экономических систем. Она была ориентирована на разработку новых систем, что соответствовало существовавшей в тот период времени ориентации на создание автоматизированных систем производства, проектирования и управления.
Хотя формально тогда и требовалось проведение предварительного обследования и анализа действующих систем, согласно имеющейся регламентирующей документации, и даже были разработаны детальные методики диагностического обследования и моделирования организаций, но на практике это редко осуществлялось. При отсутствии соответствующего инструментария данный этап требовал огромных усилий и времени, а результат работы проектировщиков учитывался по сданному госкомиссии проекту новой системы и ее опытному внедрению.
При выбранном методе дедуктивного формирования проекта представляется весьма затруднительным перейти к имеющемуся разнообразию содержания реальных процессов, при котором осуществляется не метамодельная интерпретация, когда термам теоретических конструкций приписываются так называемые лингвистические переменные, а модельная интерпретация, когда элементы модели отображают конкретные элементы СОУ, обозначаемые терминами исходной области знаний.
Но как перейти к конкретным элементам СОУ, если предварительно не построена ее исходная модель? И как формировать для нее математическую модель с заданным набором определенных ограничений и целевой функцией, адекватной реальности? Сегодня очевидно, что нужно было создавать такие модели при развитии действующих организаций и накапливать модели-прототипы для использования при проектировании новых систем. Но надо помнить, что использование этих моделей в наглядном виде стало возможным только после появления компьютеров с большим быстродействием и огромной памятью, а также инструментальных средств, обеспечивающих формирование таких моделей.
Не имея таких моделей, невозможно операционально производить сопоставление теоретических результатов с требованиями, заданными в исходной области знаний и определять адекватность использованных абстрактных схем. С другой стороны, если уже заранее имеется конкретная содержательная модель, построенная в понятиях исходной области знаний, а инструментальная система может логически обрабатывать и нематематические понятия, то необходимо обосновать целесообразность применения математических концептуальных моделей в условиях использовании сетей компьютеров с большой памятью и быстродействием.
При использовании рассматриваемой методологии следует учитывать, что, уменьшая разнообразие и удерживая разработку системы в определенных теоретических границах, применение конструктов одновременно огрубляет предметную область, ограничивая возможности понятийного моделирования профессионалов. Когда конструкт создается, то рассматривается и идеализируется некоторая сторона сущности. Будучи созданным, конструкт может иметь много материальных и знаковых воплощений, но при этом он отображает лишь математический аналог некоторой стороны сущности, а не саму содержательную сторону сущности, которую адекватно может воспринимать профессионал в этой области. При этом природа знаний в предметных областях зачастую такова, что фразы, с помощью которых общаются профессионалы, являются лишь намеком на образы реальной сущности, возникающие у них при обучении и в результате приобретения опыта. Эти образы активизируются при восприятии фразы в сознании специалиста, но для передачи смысла фраз специалистам из других областей знаний соответствующие образы требуют расшифровки намеков.
Проблемой является и обеспечение теоретического контроля процесса создания конструктов, в частности, обоснования выбора аспектов сущности, лежащих в основе разработки математических конструкций, и корректности ее выполнения. Используемые математические конструкты должны обеспечивать интеграцию методов и средств, имеющихся в разных предметных областях, выполняя функцию их теоретической надстройки. Учитывая огромную масштабность и сложность областей знаний, которые необходимо охватывать современному разработчику, эти конструкты могут выполнять и гносеологическую функцию.
Методология оказалась весьма эффективной при анализе сложных и слабо структурированных предметных областей. Она обеспечивает быстроту действий концептуалиста при освоении таких областей и способствует выявлению проблем. Это стало особенно актуальным для областей деятельности, по-разному понимаемых участниками процесса развития, в частности, “из-за неадекватности и туманности применяемых понятий, или неспособности оперировать этими понятиями” [6:2002]. Практическую ценность она продемонстрировала для областей знаний, где отсутствуют или устарели имеющиеся теоретические описания. Кроме этого, методология полезна для описания недостаточно институализированных видов деятельности, особенно если причиной этого явилась неразвитость социальных отношений, несогласованность правил взаимодействия и механизмов обеспечения соблюдения правил.
Успешное применение методологии имело место при понятийной реконструкции психоанализа, эзотерических учений и теории этногенеза Л.Н.Гумилева, решения проблем обеспечения безопасности России, законотворческой деятельности, корпоративного управления и многих других видов деятельности [7:1997;8:1998 и др.].
Полная библиография публикаций по концептуальному анализу и проектированию за период с 1967 по 2003 год приведена в [9]. В ней представлено 742 публикации, сгруппированные по алфавиту авторов, по годам публикации и по тематике. Авторский указатель охватывает 189 авторов, а тематический – 83 рубрики.
Контрольные вопросы и задания
1. В чем состоит сущность методологии АСПСОУ? 2. Каким образом в этой методологии обеспечивается логическая направленность и управляемость процесса проектирования?
3. Какие функции должна была выполнять система АСПСОУ? 4. Что является входом в процесс проектирования СОУ в данной методологии? 5. Каким образом обеспечивается универсальность методологии АСПСОУ? 6. Дайте содержательную трактовку «логосинотопотеху». 7. Что ограничивает применяемость рассмотренной методологии? 8. В чем состоит проблема перехода от концептуальной модели к конкретным моделям элементов СОУ? 9. Какие проблемы возникают при использовании математических конструктов?
3.2. Система концептуального проектирования
автоматизированных систем (КОПАС)
Методология КОПАС была разработана при подготовке в 1984 г. по заказу Госстроя СССР технического задания на создание инструментальной системы, обеспечивающей компьютерную поддержку процесса разработки специализированных автоматизированных систем, предназначенных для проектирования различных видов объектов строительства. Разработка была выполнена в Харьковском институте инженеров коммунального строительства (нынешнее название - Харьковская национальная академия городского хозяйства) по договору с институтом ЦНИИПИАСС, позднее названного ЦНИИпроект Госстроя СССР. Методология и проект инструментария этой системы описаны в работах [1,2:1986; 3:1989; 4,5:1990; 6:1993; 7:1997; 8:1998].
Функции системы КОПАС. Функциональная структура системы представлена в табл. 4, где перечислены ее функции и, в целом, входные и выходные объекты. В отличие от методологии АСП СОУ, в ней на входе используются не метамодели общих теорий классов систем, таких, например, как теория целенаправленных систем [9:1974,1978], а взаимосвязанный набор конкретизированных метамоделей. В табл. 5,6 представлены составы, структуры и краткие описания метамоделей среды, из которой затем выделяются системы, и метамоделей систем. Примеры ряда функциональных математических метамоделей среды и систем содержатся в табл. 7. Они описывают, с использованием теории множеств, понятия процесса преобразования входных объектов в выходные объекты для общих, операционных, информационных, проектирующих, управляемых, управляющих и других видов систем.