Смекни!
smekni.com

Учебно-методическое пособие Санкт-Петербург 2005 ббк 81. 1 З-38 (стр. 2 из 8)

· синтаксическая разметка, являющаяся результатом синтаксического анализа, или парсинга (англ. parsing), выполняемого на основе данных морфологического анализа. Этот вид разметки описывает синтаксические связи между лексическими единицами и различные синтаксические конструкции (например, придаточное предложение, глагольное словосочетание и т.п.);

· семантическая разметка. Хотя для семантики нет единой семантической теории, чаще всего семантические тэги обозначают семантические категории, к которым относится данное слово или словосочетание, и более узкие подкатегории, специфицирующие его значение;

· анафорическая разметка. Фиксирует референтные связи, например, местоименные;

· просодическая разметка. В просодических корпусах применяются метки, описывающие ударение и интонацию. В корпусах устной разговорной речи просодическая разметка часто сопровождается так называемой дискурсной разметкой, которая служит для обозначения пауз, повторов, оговорок, и т.д.

Существуют и другие типы разметки.

1.5. Технология создания корпусов

Технологический процесс создания корпуса можно представить в виде следующих шагов или этапов.

1. Определение перечня источников.

2. Оцифровка текстов (преобразование в компьютерную форму). Следует сказать, что насколько раньше задача ввода текстов в компьютер была тяжела и трудоемка, настолько сегодня эта проблема решается довольно легко, по крайней мере, что касается современных текстов и в современной орфографии. Эта легкость базируется на успехах в оптическом вводе (сканирование) и распознавании текстовой информации и на глобальной компьютеризации современной жизни, в том числе и в областях, связанных с обработкой текстовой информации. Тексты в электронном виде для создания корпусов могут быть получены самыми разными способами — ручной ввод, сканирование, авторские копии, дары и обмен, Интернет, оригинал-макеты, предоставляемые составителям корпусов издательствами и проч.

3. Предобработка текста. На этом этапе все тексты, полученные из разных источников, проходят филологическую выверку и корректировку. Также осуществляется подготовка библиографического и экстралингвистического описания текста.

4. Конвертирование и графематический анализ. Некоторые тексты проходят также через один или несколько этапов предварительной машинной обработки, в ходе которых осуществляются различного рода перекодировка (если требуется), удаление или преобразование нетексто­вых элементов (рисунки, таблицы), удаление из текста переносов, «жёстких концов строк», обеспечение единообразного написания тире и проч. Как правило, эти операции выполняются в автоматическом режиме. Обычно на этом же этапе осуществляется сегментирование текста на его структурные составляющие.

5. Разметка текста. Разметка текста заключается в приписывании текстам и их компонентам дополнительной информации (метаданных). Метаописание текстов корпуса включает как содержательные элементы данных (библиографические данные, признаки, характеризующие жанровые и стилевые особенности текста, сведения об авторе), так и формальные (имя файла, параметры кодирования, версия языка разметки, исполнители этапов работ). Эти данные обычно вводятся вручную. Структурная разметка документа (выделение абзацев, предложений, слов) и собственно лингвистическая разметка обычно осуществляются автоматически.

6. На следующем этапе осуществляется корректировка результатов автоматической разметки: исправление ошибок и снятие неоднозначности (вручную или полуавтоматически).

7. Заключительный этап – конвертирование размеченных текстов в структуру специализированной лингвистической информационно-поисковой системы (corpus manager), обеспечивающей быстрый многоаспектный поиск и статистическую обработку.

8. И, наконец, обеспечение доступа к корпусу. Корпус может быть доступен в пределах дисплейного класса, может распространяться на CD-ROM и может быть доступен в режиме глобальной сети. Различным категориям пользователей могут предоставляться разные права и разные возможности.

Конечно, в каждом конкретном случае состав и количество проце­дур могут отличаться от выше перечисленных, и реальная технология может оказаться гораздо сложнее.

1.6. Автоматическая разметка

Фактически, корпус в его современном понимании – это всегда компьютерная база данных, и в процессе его создания естественно использование специальных программ. Среди этих программ особое место занимают программы автоматической разметки. Разметка корпусов представляет собой трудоемкую операцию, особенно учиты­вая размеры современных корпусов. Если для некоторых видов разметки, в частности анафорической, просодической, создание автоматических систем пока представляется довольно сложным и основная часть работы проводится вручную, то для морфологического и синтаксического анализа существуют различные программные средства, которые принято называть соответственно тэггеры (taggers) и парсеры (parsers). В результате работы программ автоматического морфологиче­ского анализа каждой лексической единице приписываются граммати­че­ские характеристики, включая часть речи, лемму (нормальную форму) и набор граммем (например, род, число, падеж, одушевлен­ность/неодушевленность, переходность и т.п.). В результате работы программ автоматического синтаксического анализа фиксируются син­таксические связи между словами и словосочетаниями, а синтаксиче­ским единицам приписываются соответствующие характеристики (тип предложения, синтаксическая функция словосочетания и т.п.).

1.7. Исправление ошибок и снятие неоднозначности

Однако автоматический анализ естественного языка небезошибо­чен и многозначен – он, как правило, дает несколько вариантов анализа для одной лексической единицы (слова, словосочетания, предложения). В этом случае говорят о грамматической омонимии. Снятие неодно­значности (морфологической, синтаксической) в целом является одной из важнейших и сложнейших задач компьютерной лингвистики. При создании корпусов для снятия неоднозначности используются автома­тические и ручные способы. Корпусы нового поколения включают сотни миллионов слов, поэтому выдвигаются принципы разработки систем, которые бы минимизировали вмешательство человека. Автома­тическое разрешение морфологической или синтаксической омонимии, как правило, основывается на использовании информации более высокого уровня (синтаксического, семантического) с применением статистических методов.

1.8. Форматы данных и стандартизация

Корпусы, как правило, предназначены для многократного использования многими пользователями, соответственно, и их разметка, и их программное обеспечение должны быть определенным образом унифицированы. Что касается разметки, то как лингвистическая, так и экстралингвистическая разметка должны базироваться на некоторых достаточно широко распространенных и принятых принципах описания текстов и языковых единиц. Параметры разметки и их значения должны быть достаточно «естественными», т.е. должны соответствовать общепринятым научным классификациям. Что касается программного обеспечения, то оно должно поддерживать обработку типовых запросов и решение типовых задач. Большое значение имеет унификация форматов, как их наполнения, так и структуры. Единые форматы представления данных позволяют во многих случаях использовать единое программное обеспечение и обмениваться корпусными данными. Стандартизация в отношении корпусов, совместимость типов данных важны и с точки зрения сравнимости разных корпусов. Вопросы оценки корпусов, их пригодности к различным заданиям также требуют своих «стандартов оценки».

В настоящее время на основе международного опыта выработались де-факто стандарты представления метаданных, базирующиеся на описаниях текстов в рамках проекта Text Encoding Initiative (TEI) и на рекомендациях EAGLES (Expert Advisory Group on Language Engineering Standards). В качестве формального языка разметки широко применяются языки SGML и XML. В настоящее время стандарты EAGLES непосредственно включаются в технологическую среду языка XML, см., в частности, разработку стандарта Corpus Encoding Standard for XML (XCES).

1.9. Корпусные менеджеры

Работа пользователей с корпусом осуществляется с помощью специализированных программных средств – корпусных менеджеров, предоставляющих разнообразные возможности по получению из корпуса необходимой информации:

- поиск конкретных словоформ;

- поиск словоформ по леммам;

- поиск группы словоформ в виде разрывной или неразрывной синтагмы;

- поиск словоформ по набору морфологических признаков;

- отображение информации о происхождении, типе текста и т.п.;

- вывод результатов поиска с указанием контекста заданной длины;

- получение различных лексико-грамматических статистических данных;

- сохранение отобранных строк конкорданса в отдельном файле на компьютере пользователя и др.

Результаты поиска обычно выдаются в виде конкорданса (поэтому корпусные менеджеры еще называют конкордансерами), где искомая единица представлена в ее контекстном окружении и в виде статистических данных. Последние могут фиксировать частотные характеристики отдельных языковых единиц, или граммем, или могут характеризовать совместную встречаемость нескольких лексических единиц. Многие системы позволяют настраивать формат выдачи (менять длину левого и правого контекста, задавать объем выдачи и порядок сортировки данных, отображать или не отображать лингвистические и экстралингвистические характеристики, и т.д.).

Пример выдачи корпусных менеджеров см. в Приложении 1 (рис. 2–4).

1.10. Пользователи и способы использования корпусов

Пользователей корпусов, как правило, интересует не содержание конкретных текстов, а их метатекстовая информация и примеры употребления тех или иных языковых элементов и конструкций. Это, в первую очередь, лингвисты. Первоначальные лингвистические исследования, проводившиеся с помощью корпусов, сводились к подсчету частот встречаемости различных языковых элементов. Статистические методики используются в решении сложных лингвистических задач, таких как машинный перевод, распознавание и синтез речи, средства проверки орфографии и грамматики и т.д. Так, устойчивые словосочетания представляют собой с семантической точки зрения неделимую смысловую единицу, что очень важно учитывать в лексикографии, системах автоматической обработки текста. На материале корпуса статистическими методами можно определить, какие слова встречаются вместе регулярно и, таким образом, могут быть отнесены к устойчивым словосочетаниям. Корпусы являются богатым источником данных для исследований по лексикографии и грамматике. С исследованиями по лексикографии тесно связаны исследования в области семантики. Наблюдая окружения той или иной лингвистической единицы в корпусе, можно установить определенные семантические признаки, характеризующие данную единицу.