2. Если доходность облигации не меняется в течение срока её обращения, то величины дисконта или премии будут уменьшаться при уменьшении срока погашения.
В качестве примера рассмотрим облигацию В со сроком обращения 5 лет и номинальной стоимостью $ 1000, купонные выплаты по которой составляют $ 60 ежегодно, а текущий рыночный курс составляет $ 883,31, что говорит о доходности в 9%. Через год при условии, что ее доходность все еще рана 9%, облигация будет продаваться за $ 902,81. Таким образом, ее дисконт снизится с $ 116,69 ($ 1000 - $ 883.31) до 97,19 ($1000 - $902.81) на $ 19.50 ($116.69-$97.19). [1, c 456]
Иначе эту теорему можно сформулировать следующим образом: если две облигации имеют одну и ту же купонную ставку, номинал и доходность, то та, у которой срок обращения короче, будет продаваться с меньшим дисконтом или премией. Рассмотрим две облигации, одну со сроком обращения 5 лет, а другую со сроком обращения 4 года. Обе имеют номинал $1000, купонные платежи в $60 и доходность 9%. В этой ситуации та облигация, у которой срок обращения составляет 5 лет, имеет дисконт $116,69, а та, у которой срок обращения составляет 4 года, имеет дисконт $97,19. [1, c457]
3. Если доходность облигации не меняется в течение срока ее обращения, то величины дисконта или премии будут уменьшаться тем быстрее, чем быстрее уменьшается срок до погашения.
Для примера рассмотрим снова облигацию Б. Если она все еще имеет доходность 9%, то через 2 года будет продаваться за $924,06. Таким образом, ее дисконт снизится до $75,94 ($1000 — $924,06). Изменение дисконта при уменьшении срока обращения с 5 до 4 лет равно $19,50 ($116,90 - $97,19), что соответствует 1,950% номинала. Однако изменение дисконта при уменьшении срока обращения с 4 до 3 лет больше, и в абсолютном выражении оно составляет $21.25 ($97.19 - $75.94), а в процентном – 2,125%. [1, c458]
4. Уменьшение доходности облигации приведет к росту ее курса на величину большую, чем соответствующее падение курса при увеличении доходности на ту же величину.
Например, рассмотрим облигацию С со сроком обращения 5 лет и купонной ставкой 7%. Поскольку в настоящий момент она продается по номиналу $1000, ее доходность равна 7%. Если ее доходность увеличится до 8%, то она будет продаваться по $960,07, а уменьшение курса составит $39,93. Если же ее доходность уменьшится до 6%. то она будет продаваться по $1042,12; увеличение курса составит $42,12, что больше, чем $39,93 при росте доходности на 1%. [1, c458]
5. Относительное изменение курса облигации (в %) в результате изменения доходности будет тем меньше, чем выше купонная ставка.
Сравним, например, облигации D и С. Облигация D имеет купонную ставку 9%. что на 2% больше, чем у облигации С. Однако облигация D имеет такой же срок обращения (5 лет), как и облигация С и такую же доходность (7%). Таким образом, текущий рыночный курс облигации D равен $1082. Теперь, если доходность по облигациям С и D увеличится до 8%, то их курсы упадут до $960,07 и $1039,93 соответственно. Это означает, что курс облигации С упал на $39,93 ($1000 - $960,07). или 3,993%. (Заметим, что 3,993% = $39,93/$ 1000.) Для облигации D падение курса равно $42,07 ($1082 - $1039,93), или 3,889%. (Заметим, что 3,889% = $42,07/$ 1082.) Так как облигация D имеет более высокую купонную ставку, то относительное изменение ее курса меньше. [1, c 458]
При анализе облигаций важно понимать эти свойства, так как они довольно важны для прогнозирования влияния процентных ставок на курсы облигаций.
2.2. Дюрация
Дюрация (duration) есть мера «средней зрелости» потока платежей, связанных с облигацией. Более точно это можно определить как взвешенное среднее сроков времени до наступления остающихся платежей. Рассмотрим облигацию с ежегодным купонным платежом в $80, сроком до погашения 3 года и номиналом $1000. Так как ее текущий рыночный курс равен $950,25, то ее доходность к погашению равна 10%. Как показано в табл. 1, дюрация этой облигации равна 2,78 года. Эта величина получена следующим образом. Приведенная стоимость каждого платежа умножается на время, через которое этот платеж должен поступить, затем все полученные значения суммируются, сумма ($2639,17) делится на рыночный курс облигации ($950,25). [1,c459]
Конкретно, формула для вычисления дюрации (D) выглядит следующим образом:
D = (∑PV (C1) * t) / P0
Где PV (C1) обозначает приведенную стоимость платежей, которые будут получены в момент времени t (приведенная стоимость вычислена с помощью ставки дисконтирования, равной доходности к погашению облигации); Р0 обозначает текущий рыночный курс облигации; Т — срок до погашения облигации.
Таблица 1
Время до поступления платежа | Сумма платежа (долл.) | Ставка приведения | Приведенная стоимость платежа (долл.) | Приведенная стоимость платежа, умноженная на время |
1 | 80 | 0,9091 | 72,73 | 72,73 |
2 | 80 | 0,8264 | 66,12 | 132,23 |
3 | 1,080 | 0,7513 | 811,40 | 2434,21 |
Сумма | 950,25 | 2639,17 |
Дюрация =2639,17 / 950,25 = 2,78 года.
В примере, приведенном в табл. 16.1, величина 0,07653 ($72,73/$950,25) - это часть рыночного курса облигации, которая должна быть получена через 1 год. Аналогично, величина 0,06958 ($66,12/5950,25) должна быть получена через 2 года и величина 0,85388 ($811,40/$950,25) должна быть получена по истечении 3 лет. Заметим, что в сумме эти доли дают единицу, что и позволяет использовать их в качестве весов при вычислении взвешенного среднего. Таким образом, чтобы вычислить взвешенное среднее платежей по облигации, каждый вес нужно умножить на соответствующий отрезок времени до наступления данного платежа и затем полученные произведения сложить: (1 * 0,07653) + (2 * 0,06958) + (3 * 0,85388) = 2,78 года. [1,c460]
2.2.1. Связь с изменением курса облигации
Одно из следствий теоремы 5 заключается в том, что облигации, имеющие одинаковые сроки погашения, но различные купонные платежи, могут по-разному реагировать на одно и то же изменение процентной ставки, т.е. курсы этих облигаций могут меняться по-разному при заданном изменении процентной ставки. Однако облигации с одинаковой дюрацией будут реагировать сходным образом. Таким образом, процентное изменение курса облигации связано с ее дюрацией по следующей формуле:
дельта Р / Р = -D (дельта y / (1+y)) (1)
Эта формула показывает, что когда доходности двух облигаций, имеющих одну и ту же дюрацию, изменяются на один и тот же процент, то и курсы этих облигаций изменяются примерно на один и тот же процент [1, c 461].
Для примера рассмотрим облигацию, которая в настоящий момент продается по $1000 при доходности 8%. При условии, что дюрация облигации составляет 10 лет, насколько изменится ее цена при увеличении доходности до 9%? Используя формулу, получим Ау = 9% - 8% = 1% = 0,01, отсюда Ау /(1 + у) = 0,01/1,08 = 0,00926 = 0,926% и -D [Ау /(1 + у)] ~ -10 (0,926%) = -9,26%, т.е. рост доходности на 1% приведет к падению курса приблизительно на 9,26% до $907 [$1000 - (0,0926 х $1000)].
2.2.2. Изменения временной структуры
Как отмечалось ранее, при изменении доходности меняются курсы большинства облигаций, но некоторые изменяются сильнее, чем другие. Даже облигации с одинаковым сроком погашения могут по-разному реагировать на заданное изменение доходности. Однако уравнение 1 показывает, что процентное изменение курса облигации связано с её дюрацией. Следовательно, курсы двух облигаций, имеющих одну и ту же дюрацию, будут реагировать схожим образом на данное изменение доходности.
Например, облигация, показанная в табл. 1, имеет дюрацию 2,78 и доходность 10%. Если ее доходность меняется до 11%, то процентное изменение величины (1 + доходность) равно 0,91% [(1,11 - 1,10)/1,10], т.е. ее курс должен измениться примерно на-2,53% (-2,78x0,91%). Используя ставку дисконтирования 11%, можно точно вычислить курс, который будет равен $926,69, при этом фактическое изменение курса составит —$23,56 ($926,69 — $950,25), а соответствующее процентное изменение будет равно -2,48%
(-$23,56/$950,25). Любая другая облигация с дюрацией 2,78 даст похожее изменение курса при таком же изменении доходности.
Рассмотрим облигацию, со сроком обращения 4 года, которая также имеет дюрацию 2,78 года. При одинаковых изменениях процентных ставок и доходностей по трехгодичным и четырехгодичным облигациям, их курсы также изменятся одинаково. Например, если доходность по четырехгодичным облигациям увеличивается с 10,8% до 11.81%, а доходность по трехгодичным облигациям увеличивается с 10 до 11%, то процентное изменение приведенной стоимости четырехгодичной облигации будет примерно равно -2,53% {-2,78 х [(1,1181 - 1,108)/1,108] = 2,78 х 0,91%}, что совпадает с процентным изменением приведенной стоимости трехгодичной облигации.
Что произойдет, если процентные изменения величины (1 + доходность) будут различными? Другими словами, что случится, если временная структура изменится таким образом, что процентные изменения величины (1 + доходность) окажутся различными для разных бумаг? Например, доходность по трехгодичным облигациям поднимется с 10 до 11% [процентное изменение 0,91% = (1,11 — 1,10)/1,10], а доходность по четырехгодичным облигациям увеличится с 10,8 до 11,5% [процентное изменение 0,63% = = (1,115 - 1,108)/1,108]. В этом случае процентное изменение цены четырехгодичной облигации примерно составит -1,75% {-2,78 х [(1,115-1,108)/1,108]}, что меньше -2,53% для трехгодичной облигации. Так что даже в том случае, если две облигации имеют одну и ту же дюрацию, это еще не значит, что их цены будут одинаково реагировать на любые изменения доходности, поскольку эти изменения могут быть различными для облигаций, имеющих равную дюрацию [1, c 463].