Заключение.
Математические модели - не только средство для количественного описания явлений. Модель сложной системы - это математический образ, позволяющий формализовать и обобщить в терминах теории представления о многочисленных свойствах и характеристиках сложной системы. Расширение понятийного и образного круга не меньше чем количественные расчеты представляет собой ценный результат междисциплинарных исследований с применением аппарата математики и физики для изучения живых систем. В этом смысле популяционная динамика занимает особое место. При всей ограниченности "числа особей", как характеристики вида или сообщества, значение термина "численность" имеет четкий и универсальный смысл.
Популяционная динамика представляет собой область математической биологии, описывающая с помощью моделей типы динамического поведения развивающихся систем, представляющих собой одну или несколько взаимодействующих популяций или внутрипопуляционных групп. Отличительной чертой биологических популяций, как и всех живых систем, является их удаленность от термодинамического равновесия, использование для своего роста и развития энергии внешних источников. Это обуславливает необходимость использования для описания таких систем нелинейных моделей, позволяющих отразить основные характерные черты популяционной динамики лабораторных и природных популяций. Это - ограниченность роста, вызванная совокупностью факторов. Возможность нескольких стационарных исходов в зависимости от начальных условий роста популяции. "Зависание" системы вблизи критической границы и ее чувствительность в этой области к малым флуктуациям и индивидуальным усилиям. Запаздывание реакции системы на изменение внешних факторов. Возможность колебательных и квазистохастических режимов.. Математические результаты, полученные при изучении моделей популяционной динамики служат для практических целей управления биотехнологическими и природными системами и, дают пищу для развития собственно математических теорий.
Литература.
1) А.Д.Базыкин. Математичесакая биофизика взаимодействующих популяций. М., Наука, 1985, 165 с.
2) М.Бигон, Дж.Харпер., К. Таунсенд. Экология. Особи, популяции и сообщества. М., Мир. 1989, Том 1, 657 с.
3) Пайтген Х.-О., Рихтер П.Х. Красота фракталов. Образы комплексных динамических систем. М., Мир, 1993, 176 с.
4) Ризниченко Г.Ю., Рубин А.Б. Математические модели биологических продукционных процессов. М., Изд. МГУ, 1993, 301 с..
5) Ю.М.Свирежев, О.Д.Логофет. Устойчивость биологических сообществ. М., Наука, 1978, 352 с.
6) С.П.Капица, С.П.Курдюмов, Г.Г.Малинецкий. Синергетика и прогнозы будущего. М., Наука, 1997.