Смекни!
smekni.com

по истории и философии науки История изучения динамики популяций (стр. 3 из 5)

(12)

Здесь, как и в логистическом уравнении (3), r-константа собственной скорости роста, K - емкость экологической ниши популяции. Ход решения уравнения (12) можно наглядно продемонстрировать графически с помощью диаграммы и лестницы Ламерея. Точка пересечения биссектрисы первого координатного угла Nt+1=Nt и функции F(Nt) определяет равновесное состояние системы, аналогичное стационарному состоянию дифференциального уравнения. На рис. 5б показан способ нахождения значений Nt в последовательные моменты времени. Пусть в начальный момент времени N=N0. F(N0)=N1 задает значение численности в последующий момент времени t=1. Величина N1 в свою очередь определяет значение F(N1)=N2. И так далее. На рис. 5б изображен случай, когда траектория сходится к равновесному состоянию, совершая затухающие колебания.

Рис.5. Модели популяций с неперекрывающимися поколениями. а. Вид одноэкстремальной функции зависимости численности популяции в данный момент времени от численности в предыдущий момент времени. Nt+1=F(Nt); б. Определение значений численности популяции в последовательные моменты времени (см. текст) для дискретного аналога логистического уравнения (12).

В зависимости от крутизны графика функции F(N1) (кривые a,b,c,d на рис. 6) в системе могут возникать самые разнообразные режимы. С ростом r поведение усложняется. Монотонное стремление к равновесию (Рис.6а) сменяется колебательным (Рис.6б). При дальнейшем увеличении r (увеличении крутизны кривой F(N1)) возникают циклы - аналоги предельных циклов для систем дифференциальных уравнений (рис. 6 в,г). Если r еще больше растет - наблюдается квазистохастическое поведение - хаос. (рис. 6 д,е). Модели такого типа являются простейшими детерминированными объектами, демонстрирующими квазистохастическое поведение.

Квазистохастическим поведением могут обладать и переменные в непрерывных нелинейных автономных системах трех и более дифференциальных уравнений. Изображение детерминированного хаоса в популяции из трех видов: хишник - две жертвы представлено на рис.12. Таким образом, стохастичность может быть свойством, присущим самим детерминированным природным системам (Детерминированный хаос), и не зависит от того, какой математический аппарат, непрерывный или дискретны, используется.

Рис.6. Типы динамики численности в модели популяции с неперекрывающимися поколениями при разных значениях собственной скорости роста. а.- Монотонный рост; б.- Затухающие колебания; в.- двухточечный цикл; г.- четырехточечный цикл; д, е- квазистохастическое поведение.

Матричные модели популяций

Ч = П + Р – см – онк.

Доля = онк /Ч

Модели взаимодействия двух популяций

Любые популяции существуют во взаимодействии с окружением. Взаимодействовать могут как биологические виды в собственном смысле этого слова, так и разновидности одного вида, например, различные мутанты одного и того же вида микроорганизмов при их культивировании. Взаимодействия принято разделять на трофические (когда один из видов питается другим видом) и топические (взаимодействия между видами одного трофического уровня). Более подробно типы взаимодействий рассмотрены в статье "Экология математическая". В популяционной динамике принято классифицировать взаимодействия по их результатам. Наиболее распространенными и хорошо изученными являются взаимодействия конкуренции (когда численность каждого из видов в присутствии другого растет с меньшей скоростью), симбиоза (когда виды способствуют росту друг друга) и типа хищник-жертва или паразит-хозяин (когда численность вида-жертвы в присутствии вида-хищника растет медленнее, а вида-хищника - быстрее). В природе также встречаются взаимодействия , когда один из видов чувствует присутствие второго, а другой - нет (аменсализм и комменсализм), или виды нейтральны.

Первое глубокое математическое исследование закономерностей динамики взаимодействующих популяций дано в книге В Вольтерра "Математическая теория борьбы за существование" (1931)) Крупнейший итальянский математик Вито Вольтерра - основатель математической биологии (см. Биология математическая) предложил описывать взаимодействие видов подобно тому, как это делается в статистической физике и химической кинетике, в виде мультипликативных членов в уравнениях (произведений численностей взаимодействующих видов). Тогда в общем виде с учетом самоограничения численности по логистическому закону система дифференциальных уравнений, описывающая взаимодействие двух видов, может быть записана в форме:

(19)

Здесь параметры ai - константы собственной скорости роста видов, ci - константы самоограничения численности (внутривидовой конкуренции), bij - константы взаимодействия видов, (i,j=1,2). Соответствие знаков этих последних коэффициентов различным типам взаимодействий приведено в таблице.

ТИПЫ ВЗАИМОДЕЙСТВИЯ ВИДОВ

СИМБИОЗ + + b12,b21>0

КОММЕНСАЛИЗМ + 0 b12,>0, b21=0

ХИЩНИК-ЖЕРТВА + - b12,>0, b21<0

АМЕНСАЛИЗМ 0 - b12,=0, b21<0

КОНКУРЕНЦИЯ - - b12, b21<0

НЕЙТРАЛИЗМ 0 0 b12, b21=0

Исследование свойств моделей типа (7.1) приводит к некоторым важным выводам относительно исхода взаимодействия видов.

Уравнения конкуренции (b12,>0, b21<0) предсказывают выживание одного из двух видов, в случае если собственная скорость роста другого вида меньше некоторой критической величины. Оба вида могут сосуществовать, если произведение коэффициентов межпопуляционного взаимодействия меньше произведения коэффициентов внутри популяционного взаимодействия: b12b21<c1c2..

Для изучения конкуренции видов ставились эксперименты на самых различных организмах. Обычно выбирают два близкородственных вида и выращивают их вместе и по отдельности в строго контролируемых условиях. Через определенные промежутки времени проводят полный или выборочный учет численности популяции. Регистрируют данные по нескольким повторным экспериментам и анализируют. Исследования проводили на простейших (в частности, инфузориях), многих видах жуков рода Tribolium, дрозофиллах, пресноводных ракообразных (дафниях). Много экспериментов проводилось на микробных популяциях. В природе также проводили эксперименты, в том числе на планариях (Рейнольдс) двух видах муравьев (Понтин). Результаты свидетельствуют о существовании конкуренции, ведущей к уменьшению численности обоих видов.

Модель конкуренции типа (19) имеет недостатки, в частности, из нее следует, что сосуществование двух видов возможно лишь в случае, если их численность ограничивается разными факторами, но модель не дает указаний, насколько велики должны быть различия для обеспечения длительного сосуществования. Внесение стохастических элементов (например, введение функции использования ресурса) позволяет ответить на эти вопросы.

Для взаимоотношений типа хищник-жертва или паразит-хозяин система уравнений (19) принимает вид:

(20)

ри различных соотношениях параметров в системе возможно выживание только жертвы, только хищника (если у него имеются и другие источники питания) и сосуществование обоих видов. В этом случае численности видов совершают колебания, причем колебания численности хищника в модели запаздывают по отношению к колебаниям численности жертвы. (рис.8)

На вопрос о том, отражает ли модель (20) природные закономерности ответить не так просто. В реальности колебания численностей хищника и жертвы наблюдались как в природных, так и в экспериментальных ситуациях (рис. 9).

Однако, существует много важных аспектов экологии хищника и жертвы, которые в модели не учтены. Даже если в популяции наблюдаются регулярные колебания численности, это вовсе не обязательно служит подтверждением модели Вольтерра, логистической модели с запаздыванием (10) или любой другой простой модели. Колебательное изменение численности популяции в природе может отражать ее взаимодействие с пищевыми объектами или с хищниками. Численность хищников может повторять эти циклы даже в том случае, если само взаимодействие их не вызывает. При описании любой конкретной ситуации требуется построение гораздо более подробной модели, чаще всего имитационной (см. Биология математическая), и необходима большая работа по идентификации параметров такой модели, лишь тогда можно надеяться на правдоподобное моделирование природной ситуации.

Обобщенные модели взаимодействия двух видов.

С середины 20 века в связи с развитием интереса к экологии и с быстрым усовершенствованием компьютеров, позволившим численно решать и исследовать системы нелинейных уравнений, стало развиваться направление популяционной динамики, посвященное выработке общих критериев с целью установить, какого вида модели могут описать те или иные особенности поведения численности взаимодействующих популяций, в частности, устойчивые колебания.

Эти работы развивались по двум направлениям. Представители первого направления, описывая входящие в модельные системы функции, задают лишь качественные особенности этих функций, такие как положительность, монотонность отношения типа большеменьше (Колмогоров, 1972, Rosenzweig, 1969). Рассматриваемые здесь модели могут быть изучены аналитически.

В рамках второго направления последовательно рассматривались различные модификации системы Вольтерра, получаемые включением в исходную систему различных дополнительных факторов и закономерностей, описываемых явными функциями (Холлинз, 1965, Иевлев,1955, Полуэктов, 1980, Базыкин, 1985, Медвинский, 1995). Использование компьютерной техники позволило применить полученные здесь результаты к конкретным популяциям, в частности, к задачам оптимального промысла.