Т.к. частицы аэрозоля обычно слабо заряжены или практически электронейтральны, им придаю достаточно большой электрический заряд. Для этого дым или туман пропускают между электродами, создающими поле весьма высокого напряжения. В таких условиях происходит так называемый коронный разряд, при котором катод (имеющий форму проволоки, для того чтобы заряд обладал наибольшей плотностью) светится и выделяет огромное количество электронов. Электроны ионизирую молекулы газа (воздуха), находящегося между электродами. Образовавшиеся отрицательные ионы адсорбируются частицами аэрозоля и придают им достаточно большой заряд, что обеспечивает частицам передвижение в электрическом поле и осаждение на аноде. Передвижению частиц к аноду способствует также «электрический ветер», возникающий между электродами. [1, 363]
При очистке от пыли сухих газов электрофильтры могут работать в широком диапазоне температур (от 20 до 500 °С) и давлений. Степень очистки от аэрозолей – выше 90, достигая 99,9% на многопольных электрофильтрах при d > 1 мкм. Недостаток этого метода – большие затраты средств на сооружение и содержание очистных установок и значительный расход энергии на создание электрического поля. [4]
Коагуляцию аэрозолей методом предварительной электризации производят, например, пропусканием газа через электризационную камеру с коронирующими электродами, где происходит зарядка и коагуляция частиц, а затем через мокрый газоочиститель, в котором газожидкостный слой служит осадительным электродом (рис. 2). Осадительным электродом может служить пенный слой в пенных аппаратах, слой газожидкостной эмульсии в насадочных скрубберах и других мокрых газопромывателях. [4] Согласно одной из теорий, действие ультразвука на аэрозоли объясняется тем, что во всех реальных полидисперсных системах разные по размеру частицы в различной степени увлекаются колебаниями среды. В результате этого мелкие частицы, обладающие большой амплитудой колебаний, как бы «прочесывают» аэрозоль. Это способствует тому, что они скорее сталкиваются с более крупными, почти неподвижными частицами. Однако против этой теории говорит то обстоятельство, что самые мелкие, наиболее энергично колеблющиеся частицы остаются в звуковом поле нескоагулированными. [361-362]
Согласно другой теории ультразвуковая коагуляция обусловливается притяжением между частицами, движущимися в ультразвуковом поле. Такое притяжение может возникнуть между частицами, движущимися в ультразвуковом поле. Такое притяжение может возникнуть между частицами аэрозоля, если они совершаю быстрое, параллельное и одинаковое направленное движение. Нужны всего секунды для того, чтобы туман, движущийся в ультразвуковом поле, скоагулировал на 90%. Полученные в результате коагуляции крупные капли легко отделяются от газа в обычных циклонах. Ультразвук применяют для разрушения сернокислотных и других производственных туманов. [1, 362]
Ряд методов разрушения атмосферных аэрозолей основан на их коагуляции. Практическое значение таких методов очень велико для сельского хозяйства, т.к. процесс коагуляции обычно сопровождается отделением дисперсной фазы атмосферных аэрозолей в виде дождя или снега. Большое значение методы коагуляции имеют и в авиации для искусственного рассеивания облаков. Искусственное рассеивание облаков и туманов проводят с использованием высокодисперсного песка, оксида углерода (II). [1, 362]
Вышеописанные способы разрушения аэрозолей являются искусственными. Помимо искусственного разрушения аэрозолей можно выделить и естественное.
Воздух, который вдыхает человек, представляет собой не что иное, как аэрозоль и всегда содержит определенное количество частиц дисперсной фазы. Человек в покое ежеминутно перерабатывает в среднем 7,5 литров воздуха, т. е. 11 тысяч литров (11 м3) в сутки. Если принять, что массовая концентрация аэрозолей равна 1 мг/м3, то за сутки в органы дыхания вместе с воздухом может быть занесено до 18 мг вредных веществ. На вскрышных карьерах и других пылеопасных объектах масса частиц, вдыхаемых вместе с воздухом, достигает нескольких сот миллиграммов. Казалось бы, человеческий организм должен был бы зарастать изнутри. [2, 179]
Но подавляющая часть аэрозольных частиц не доходит до легких. Струя выдыхаемого воздуха отгоняет аэрозольные частички и служит первой предварительной ступенью своеобразного фильтра. Второй ступенью является дыхательная система человека, которая состоит из ряда разветвленных ходов, уменьшающихся по ширине и растущих в числе. Воздух через нос или рот проходит через трахею, бронхи, бронхиолы, альвеолярные ходы (диаметром около 0,2 мм), наконец поступает в альвеолы. Перегородки, косточки и волосинки в полости носа представляют собой эффективную фильтрующую систему для относительно крупных аэрозольных частиц. Реснички, покрывающие дыхательные пути выше бронхиол, улавливают частицы, осаждающиеся в этой области дыхательной системы. В носоглотке, трахее и бронхах оседает от 40 до 90% аэрозольных частиц диаметром свыше 10 мкм. Более мелкие частицы задерживаются легкими. [2, 179]
Между двумя ступенями очистки существуют принципиальные различия: в одном случае воздух ничем не стеснен и может перемещаться в любом направлении; во втором случае запыленный воздушный поток ограничен стенками и движется в определенном направлении. [2, 180]
Дыхательная система человека — не просто фильтр, а самоочищающийся фильтр. Постоянная очистка дыхательного тракта осуществляется мерцательным эпителием, выстилающим полость носа, трахеи и бронхов. Он представляет собой слой клеток, снабженных ворсинками длиной 35—40 мкм, которые совершают непрерывные колебательные движения с частотой два колебания в секунду. В результате происходит перемещение вязкого текучего слоя слизи вместе с осевшими пылинками со скоростью 0,4— 0,6 см/мин, т. е. от входа в нос до зева пылинки могут продвинуться за 15 минут. Из глотки пыль вместе со слизью попадает в желудочно-кишечный тракт. Чем. меньше размеры частиц и выше скорость воздуха (чаще дыхание), тем с большей вероятностью аэрозольные частицы попадут в легкие и осядут в них. Можно считать, что в легкие поступают частицы диаметром менее 1 мкм. [2, 180]
Альвеолы легких — это последняя ступень фильтрующей системы организма человека на пути аэрозолей. Эта ступень, однако, очень чувствительна к загрязнениям, которые, как мы уже отмечали, могут стать причиной различных болезней. Некоторая доля аэрозольных частиц не осаждается и удаляется с выдыхаемым воздухом. Большинство аэрозольных частиц проходит через альвеолярные мембраны в свободном состоянии и проникает в легочную ткань. Некоторые вещества и небольшая часть осевших частиц могут попасть в кровеносную систему. Не задерживаются в легких и выдыхаются обратно высокодисперсные частицы диаметром менее 0,1 мкм. [2, 180-181]
При ингаляции, когда повышенная концентрация препарата создается искусственно (чтобы лекарство подействовало максимально), в дыхательных путях осаждаются более крупные частички. В трахеи проникают частицы ингаляционного препарата диаметром не выше 50 мкм, в бронхи—до 30 мкм. Частицы до 5 мкм могут содержаться в воздухе, который выдыхает человек. [2, 181]
Таким образом, мы рассмотрели понятие «аэрозоли», классификацию аэрозолей, формы и размеры частиц, механическую очистку, электростатическую очистку и очистку с помощью звуковой и ультразвуковой коагуляции, а также пример естественного разрушения аэрозолей.
Литература
1. Воюцкий С.С. курс коллоидной химии / С.С. Воюцкий. – М.: Химия, 1975. – 512 с.
2. Зимон А.Д. Аэрозоли, или Джинн, вырвавшийся из бутылки / А.Д. Зимон. – М.: Химия, 1993.
- Химический энциклопедический словарь. – М.: Советская энциклопедия, 1983. - 792 с.
- http://www.bestreferat.ru/gate.html?name=referat&func=search&squery=%E0%FD%F0%EE%E7%EE%EB%E8
- http://www.xumuk.ru/colloidchem/206. html