Смекни!
smekni.com

Тема 14. Телекоммуникации и связь кому неведомо всегдашнее несоответствие между тем, что человек ищет и что находит? (стр. 5 из 5)

Амплитудно-манипулированные сигналы простейшего типа представляют собой последовательности радиоимпульсов, разделенные паузами. Такие сигналы используются в радиотелеграфии и в системах передачи дискретных данных. Форма огибающей радиоимпульсов в общем случае может быть произвольной, паузы могут отличаться по длительности от радиоимпульсов.

На рис. 14.4.1. приведен пример амплитудно-манипулированного сигнала:

u(t) = Um×cos 2pfot,

Рис. 14.4.1. АМП-сигнал. Рис. 14.4.2. Модуль спектра АМП-сигнала.

с прямоугольной П-формой огибающей. Соответственно, в частотной области спектр АМП – сигнала образуется сверткой спектра огибающей функции (в данном случае – спектра прямоугольного импульса) со спектром косинусного колебания (дельта - функции на частоте fo). Модуль спектральной плотности сигнала приведен на рис. 14.4.2. Спектр прямоугольного импульса довольно слабо затухает и простирается неограниченно далеко, а поэтому его использование в качестве огибающей АМП - сигнала не рекомендуется, хотя и является наиболее простым по техническому исполнению.

Рис. 14.4.3. Рис. 14.4.4.

На рис. 14.4.3. приведен пример формы классического АМП сигнала при передаче нескольких символов, каждому из которых соответствует индивидуальная амплитуда несущей частоты при постоянной длительности интервалов посылки. Модуль спектра сигнала приведен на рис. 14.4.4 и тоже имеет достаточно большую ширину значимой части спектра вокруг несущей частоты.

Рис. 14.4.5.

Естественно, что при передаче данных частотный диапазон канала передачи данных ограничивается значимой частью спектра, ширина которого устанавливается по допустимой степени искажения приемных сигналов. Степень искажения сигналов существенно зависит от длительности посылок. Пример искажения вышеприведенного сигнала при ограничении спектра интервалом 40-60 кГц приведен на рис. 14.4.5.

Угловая манипуляция, как правило, использует частотные методы модулирования, в которых каждому возможному значению передаваемого символа сопоставляется индивидуальное значение частоты гармонической несущей. При этом в точках сопряжения интервалов посылок могут происходить скачки напряжения, с соответствующим усложнением спектра модулированного сигнала. Самый простой способ – синусоидальное начало несущей на каждом интервале с кратным количеством периодов несущей в посылке. При более сложных способах, независимых от точного сопряжения несущих частот с интервалами посылок, осуществляется управление скоростью изменения фазы несущих на границах посылок.

Демодуляция сигналов осуществляется корреляционными методами. Сущность методов – вычисление взаимной корреляции между принимаемым сигналом и набором опорных частот, используемых при модулировании, с идентификацией символов по максимумам взаимной корреляции.

Для повышения помехоустойчивости передачи данных желательно, чтобы разносимвольные посылки были некоррелированны. Если для бинарных символов 0 и 1 принять частоты посылок равными

s0(t) = cos wo(t), s1(t) = cos w1(t),

то их ВКФ при нулевом временном сдвиге определится выражением:

B01(0) =s0(t) s1(t) dt = ½ (sin (ω1o)T)/(ω1o) + ½ (sin (ω1o)T)/(ω1o).

При (ω1o)T >> 1 первым слагаемым можно пренебречь, оно много меньше второго. А второе слагаемое обращается в нуль при (ω1o)T = πk, где k = 1, 2, ... – целое число. Отсюда, минимальное значение между частотами манипуляции для некоррелированных посылок определяется выражениями:

min = p/T, Dfmin = 1/2T = fT/2,

где fT – символьная скорость.

Фазовая манипуляция применяется значительно реже, в связи со значительными сложностями измерения абсолютных значений начальных фаз в посылках. Проще определяется относительный фазовый сдвиг в соседних посылках, поэтому обычно используется фазоразностная манипуляция.

литература

50. Чертков. Основные сведения о телекоммуникационных системах. Лекция из Интернета. Чертков. Телекоммуникации, связь .htm

51. Ташкентский Университет Информационных Технологий. Радиорелейные и спутниковые системы передачи. Кафедра РРТ. Ташкент, 2003 год. http://ralex.h1.ru/contents.html

25. Сергиенко А.Б. Цифровая обработка сигналов. – СПб.: Питер, 2003. – 608 с.

Главный сайт автора ~ Лекции по сигналам ~ Практикум

О замеченных ошибках и предложениях по дополнению: davpro@yandex.ru.

Copyright © 2008-2010 Davydov А.V.