Смекни!
smekni.com

Общие представления о языке Java 5 (стр. 22 из 68)

Float.parseFloat(строка)

Double.parseDouble(строка)

Например, если в экранной форме имеются текстовые пункты ввода jTextField1 и jTextField2, преобразование введённого в них текста в числа может проводиться таким образом:

float f1= Float.parseFloat(jTextField1.getText());

double d1= Double.parseDouble(jTextField2.getText());

Иногда вместо класса Math ошибочно пытаются использовать пакет java.math, в котором содержатся классы BigDecimal, BigInteger, MathContext, RoundingMode. Класс BigDecimal обеспечивает работу с десятичными числами с произвольным числом значащих цифр – в том числе с произвольным числом цифр после десятичной точки. Класс BigInteger обеспечивает работу с целыми числами произвольной длины. Классы MathContext и RoundingMode являются вспомогательными, обеспечивающими настройки для работы с некоторыми методами классов BigDecimal и BigInteger.

3.5.Правила явного и автоматического преобразования типа при работе с числовыми величинами

Компьютер может проводить на аппаратном уровне целочисленные математические вычисления только с величинами типа int или long. При этом операнды в основных математических операциях ( + , - , * , / , % ) должны быть одного типа. Поэтому в тех случаях, когда операнды имеют разные типы, либо же типы byte, short или char, действуют правила автоматического преобразования типов: для величин типа byte, short или char сначала происходит преобразование в тип int, после чего производится их подстановка в качестве операндов. Если же один из операндов имеет тип long, действия производятся с числами типа long, поскольку второй операнд автоматически преобразуется к этому типу.

Аналогично, при работе с вещественными величинами в Java возможна работа на аппаратном уровне только с операндами типов float и double. При этом операнды в основных математических операциях должны быть одного типа. Если один из операндов имеет тип double, а другой float, действия производятся с числами типа double, поскольку операнд типа float автоматически преобразуется к типу double.

Если один из операндов целочисленный, а другой вещественный, сначала идёт преобразование целочисленного операнда к такому же вещественному типу, а потом выполняется оператор.

Рассмотрим теперь правила совместимости типов по присваиванию. Они просты: диапазон значений типа левой части не должен быть уже, чем диапазон типа правой. Поэтому в присваиваниях, где тип в правой части не умещается в диапазон левой части, требуется указывать явное преобразование типа. Иначе компилятор выдаст сообщение об ошибке с не очень адекватной диагностикой “possible loss of precision” (“возможная потеря точности”).

Для явного преобразования типа в круглых скобках перед преобразуемой величиной ставят имя того типа, к которому надо преобразовать. Например, пусть имеется

double d=1.5;

Величину d можно преобразовать к типу float таким образом:

(float)d

Аналогично, если имеется величина f типа float, её можно преобразовать в величину типа double таким образом:

(double)f

Во многих случаях к явному преобразованию типов прибегать не нужно, так как действует автоматическое преобразование, если переменной, имеющий тип с более широким диапазоном изменения, присваивается выражение, имеющее тип с более узким диапазоном изменения.

Например, для вещественных типов разрешено присваивание только в том случае, когда слева стоит вещественная переменная более широкого диапазона, чем целочисленная или вещественная – справа. Например, переменной типа double можно присвоить значение типа float, но не наоборот. Но можно использовать преобразование типов для того, чтобы выполнить такое присваивание. Например:

double d=1.5;

float f=(float)d;

Другие примеры допустимых присваиваний:

byte byte0=1; //-128..127

short short0=1;//- 32768.. 32767

char char0=1;//0.. 65535

int int0=1; //- 2.147483648E9.. 2.147483647E9

long long0=1;//-9.223E18.. 9.223E18

float float0=1;// ±(1.4E-45..3.402E38)

double double0=1;// ±(4.9E-324..1.797E308 )

short0=byte0;

byte0=(byte)short0;

char0=(char)short0;

int0=short0;

int0=char0;

char0=(char)int0;

short0=(short)int0;

long0=byte0;

byte0=(byte)long0;

long0=char0;

long0=int0;

int0=(int)long0;

float0=byte0;

float0=int0;

float0=(float)double0;

double0=float0;

3.6. Оболочечные классы. Упаковка (boxing) и распаковка (unboxing)

В ряде случаев вместо значения примитивного типа требуется объект. Например, для работы со списками объектов. Это связано с тем, что работа с объектами в Java может быть унифицирована, поскольку все классы Java являются наследниками класса Object, а для примитивных типов этого сделать нельзя.

Для таких целей в Java каждому примитивному типу сопоставляется объектный тип, то есть класс. Такие классы называются оболочечными (class wrappers). В общем случае они имеют те же имена, что и примитивные типы, но начинающиеся не со строчной, а с заглавной буквы. Исключение почему-то составляют типы int и char, для которых имена оболочечных классов Integer и Character.

Примитивный тип Оболочечный класс
byte Byte
short Short
char Character
int Integer
long Long
float Float
double Double

Внимание! Класс Character несколько отличается от остальных оболочечных числовых классов потому, что тип char “не вполне числовой”.

Основное назначение оболочечных классов – создание объектов, являющихся оболочками над значениями примитивных типов. Процесс создание такого объекта (“коробки” - box) из значения примитивного типа называется упаковкой (boxing), а обратное преобразование из объекта в величину примитивного типа – распаковкой (unboxing). Оболочечные объекты (“обёртки” для значения примитивного типа) хранят это значение в поле соответствующего примитивного типа, доступном по чтению с помощью функции имяТипаValue(). Например, метода byteValue() для объекта типа Byte. Но во многих случаях можно вообще не обращать внимания на отличие переменных с типом оболочечных классов от переменных примитивных типов, так как упаковка и распаковка при подстановке такого объекта в выражение происходит автоматически, и объект оболочечного типа в этих случаях внешне ведёт себя как число. Таким образом, если нам необходимо хранить в объекте числовое значение, следует создать объект соответствующего оболочечного типа.

Например, возможны такие фрагменты кода:

Integer obj1=10;

int i1= obj1*2;

Byte b=1;

obj1=i1/10;

b=2;

Но не следует забывать, что при операциях упаковки-распаковки происходят внешне невидимые дополнительные операции копирования значений в промежуточные буферные ячейки, поэтому соответствующие вычисления несколько медленнее операций с примитивными типами и требуют несколько больше памяти. Поэтому в критических к быстродействию и занимаемым ресурсам местам программы их использование нежелательно. С другой стороны, автоматическая упаковка-распаковка (она появилась в пятой версии JDK) во многих случаях заметно упрощает программирование и делает текст программы более читаемым. Так что для участков программы, некритичных к быстродействию, ею вполне можно пользоваться.

Помимо создания объектов оболочечные классы имеют ряд других полезных применений. Например, в числовых оболочечных классах хранятся константы, с помощью которых можно получить максимальные и минимальные значения:

Byte.MIN_VALUE, Byte.MAX_VALUE, Float.MIN_VALUE, Float.MAX_VALUE, Double.MIN_VALUE, Double.MAX_VALUE и т.п.

В оболочечных классах также имеются методы классов, то есть такие, которые могут работать в отсутствии объекта соответствующего типа – для их вызова можно пользоваться именем типа. Например, как мы уже знаем, имеются методы

Byte.parseByte(строка)

Short.parseShort(строка)

Integer.parseInt(строка)

Long.parseLong(строка)

Float.parseFloat(строка)

Double.parseDouble(строка)

Они преобразуют строку в число соответствующего типа.

Вызовы

Byte.valueOf(строка)

Short.valueOf(строка)

Integer.valueOf(строка)

Long.valueOf (строка)

Float.valueOf (строка)

Double.valueOf (строка)

аналогичны им, но возвращают не числовые значения, а объекты соответствующих оболочечных типов.

Примеры использования оболочечных классов:

int n1=Integer.MAX_VALUE;

double d1= Double.MIN_VALUE;

Отметим, что присваивание

double d2= Double.parseDouble(jTextField1.getText());

будет работать совершенно так же, как

double d2= Double.valueOf(jTextField1.getText());

несмотря на то, что во втором случае методом valueOf создаётся объект оболочечного типа Double. Поскольку в левой части присваивания стоит переменная типа double, происходит автоматическая распаковка, и переменной d2 присваивается распакованное значение. Сам объект при этом становится мусором – программная связь с ним теряется, и он через некоторое время удаляется из памяти системой сборки мусора. В данном случае ни быстродействие, ни объём памяти некритичны, поскольку операции взаимодействия с пользователем по компьютерным меркам очень медленные, а один объект оболочечного типа занимает пренебрежимо мало места в памяти (около сотни байт). Так что с потерями ресурсов в этом случае можно не считаться, обращая внимание только на читаемость текста программы. Поэтому автор предпочитает второй вариант присваивания: хотя он и “неоптимальный” по затрате ресурсов, но более читаем.