Смекни!
smekni.com

Рекомендации международной комиссии по радиологической защите 1990 года Публикация 60, часть 1 (стр. 8 из 27)

(71) Присутствие доз от естественных источников излучения во всех частях тела снижает важность формы зависимости доза–эффект при дозах, близких к нулю. Малые дозы всегда добавляются к дозе от естественного фона. Для умеренных добавок к фоновому излучению линейная зависимость между добавленной дозой и дополнительной вероятностью возникновения вредного эффекта будет адекватной аппроксимацией, каков бы ни был истинный вид соотношения между эквивалентной дозой и вероятностью стохастических эффектов. Но даже в этом случае еще имеет значение вид такого соотношения, поскольку он может изменить оценки наклона зависимости для приращения дозы.

(72) Наиболее простой зависимостью между приращением эквивалентной дозы и получающимся из-за этого приращением вероятности определенного стохастического эффекта является прямая, проходящая через начало координат. Эпидемиологические данные по людям недостаточно точны для подтверждения или исключения такой зависимости. Но почти все данные о стохастических изменениях в клетках ин витро и в простых биологических организмах, таких, как традесканция, а также об индукции многих опухолей у животных свидетельствуют о криволинейных зависимостях доза–эффект для излучений с малой линейной передачей энергии (ЛПЭ), причем их наклон при малых дозах меньше, чем при больших дозах. В этом контексте малые дозы (и малые мощности дозы) соответствуют условиям, при которых крайне маловероятно, что произойдет более одного акта ионизации в критических участках клетки за время, в течение которого в клетке действуют восстановительные механизмы. В таких условиях зависимость доза–эффект будет линейной. При больших дозах и мощности дозы могут комбинироваться два акта или более, вызывая повышенный эффект, который проявляется в квадратичном члене зависимости доза–эффект. При еще больших дозах, когда становится важной гибель клеток, наклон кривой снова уменьшается. Результаты для излучений с большой ЛПЭ обычно ближе к прямолинейным в диапазоне доз меньше тех, которые приводят к заметной гибели клеток. Однако некоторые исследования на клетках ин витро свидетельствуют об увеличении наклона в этом диапазоне при малых дозах.

(73) Другими словами, для излучений с малой ЛПЭ наиболее характерной формой зависимости между эквивалентной дозой в органе и вероятностью возникающего рака является начальная пропорциональная зависимость при малых значениях эквивалентной дозы с последующим более крутым нарастанием (наклоном), которое можно представить квадратичным членом, и в завершение наклон уменьшается из-за гибели клеток. Соответствующих оснований для предположений о реальном пороге в этой зависимости не имеется. Хотя данная форма зависимости и типична, она вовсе не является определяющей для всех видов рака у человека. Вместе с линейной аппроксимацией для приращений дозы выше доз, обусловленных естественным фоном, она обеспечивает приемлемую основу для использования Комиссией пропорциональной зависимости при всех уровнях эквивалентной и эффективной доз, меньших пределов дозы, рекомендуемых в этой Публикации.

(74) Комиссия пришла к выводу, что для задач радиационной безопасности имеется достаточно доказательств, оправдывающих принятое ею допущение о нелинейности при использовании данных для излучения с малой ЛПЭ при больших дозах и больших мощностях дозы с целью оценить вероятность эффектов при малых дозах и малых мощностях дозы. На основе обсуждений, приведенных в Приложении Б, Комиссия решила уменьшить в 2 раза коэффициенты вероятности, полученные непосредственно из наблюдений при больших дозах и мощностях дозы, исправленных при необходимости с учетом допущения об эффектах гибели клеток. Имеется большой разброс данных, и Комиссия сознает, что выбор этого значения до некоторой степени произволен и, возможно, консервативен. Подобный коэффициент не используется при интерпретации данных для излучения с большой ЛПЭ. Этот уменьшающий коэффициент назван Комиссией коэффициентом, учитывающим эффективность дозы и мощности дозы DDREF (Dose and Dose Rate Effectiveness Factor). Он включен в коэффициенты вероятности для всех эквивалентных доз, полученных из поглощенных доз меньше 0,2 Гр и из больших поглощенных доз при мощности дозы меньше 0,1 Гр∙год-1.

(75) Другая основная сложность в интерпретации данных по человеку состоит в оценке числа стохастических эффектов, которые еще не появились в исследуемой группе людей. Для некоторых видов рака это сделать нетрудно, поскольку частота возникновения новых случаев рака в настоящее время убывает или уже близка к ожидаемой частоте в соответствующей контрольной группе людей. Это справедливо для больных лейкемией, наблюдаемой у выживших японцев и у британских больных спондилитом, и раком костей среди пациентов, которым вводили 224Ra. Для всех других видов рака частота выявления еще остается повышенной, а согласно исследованиям японцев даже возрастает в основном в результате избыточной смертности лиц, облученных в детстве.

(76) Для большинства видов рака избыточная смертность после начального периода отсутствия риска или очень малого риска, который называется минимальным латентным периодом, имеет, по-видимому, то же распределение во времени, что и естественная смертность от рака того же вида. Если такая картина продолжается в течение всей жизни, а это несомненно так, то между естественной смертностью от рака и избытком, вызванным излучением, в течение всего времени после минимального латентного периода будет наблюдаться просто пропорциональная зависимость. Такая модель экстраполяции, мультипликативная модель риска (multiplicative risk projection model), по-видимому, слишком упрощена даже для облучения взрослых. Данные японских исследователей свидетельствуют о том, что ни она, ни аддитивная модель риска (см. ниже) не отображают адекватным образом распределение смертности после облучения маленьких детей. Такая модель не обязательно должна отражать мультипликативный биологический процесс, она может быть лишь удобным описанием пути, по которому приписанная вероятность рака изменяется со временем, прошедшим после облучения.

(77) Альтернативная модель экстраполяции, аддитивная модель риска (additive risk projection model) основывается на положении, что избыточная смертность, вообще говоря, не зависит от обычной смертности. После начального минимального латентного периода частота случаев смерти в течение нескольких лет после облучения возрастает, а затем остается довольно постоянной или убывает, как при лейкемии или раке костей. С учетом современных коэффициентов вероятности эта модель предсказывает полную конечную вероятность смерти, составляющую около половины значений, прогнозируемых моделью мультипликативного риска. Она предсказывает также больше потерянных лет жизни на приписанную смерть. Но ее уже не считают согласующейся с большинством эпидемиологических наблюдений.

(78) Вследствие ненадежной регистрации случаев возникновения рака по сравнению со смертностью от него большинство данных об облученных группах людей выражают через избыточную смертность от рака, обусловленную облучением. Но само по себе появление рака, даже не смертельного, также важно, и Комиссия учитывает его по наблюдаемой в настоящее время частоте излечения от основных видов рака. В общем смысле Комиссии нужна более широкая основа для выражения вреда, ожидаемого в облученной группе людей, и поэтому она использует понятие ущерба, рассматриваемое в разд. 3.3. Наследуемые эффекты обсуждаются в подразд. 3.4.3.

(79) Все эти затруднения приводят к неопределенности в оценке риска возникновения рака от облучения. По этой причине и в связи с тем, что Комиссия оценивает риски для представительных групп людей с конкретными условиями облучения, она называет оцененную вероятность смертельных случаев рака на единицу эффективной дозы номинальным коэффициентом вероятности смерти (nominal fatality probability coefficient). Коэффициент может применяться при малых дозах и малых мощностях дозы (см. § 74). Выводя значения номинального коэффициента вероятности, Комиссия первоначально использовала вероятность вызвать появление смертельного рака без каких-либо допущений об уменьшении этой вероятности из-за конкурирующих причин смерти. Если использовать мультипликативную, а не аддитивную модель риска, то эта поправка существенна. Она принята Комиссией в настоящее время при выводе всех значений коэффициентов вероятности. Как будет обсуждено в гл. 5, для целей защиты весьма желательно использовать одни и те же номинальные коэффициенты и для мужчин, и для женщин, и для представительных групп людей в широком интервале возрастов. Хотя существуют различия между полами и между группами людей с разной возраст–специфичной частотой смерти, они не настолько велики, чтобы Комиссии пришлось использовать разные номинальные коэффициенты вероятности. Но все же вводится небольшое различие в номинальных коэффициентах вероятности для работающих и для всего населения. Хотя оно и невелико, но, по-видимому, существует, поскольку в принципе должно появляться из-за того, что население включает в себя более чувствительные группы лиц младшего возраста.

(80) Обзор доступных данных приведен в Приложении Б. Выбирая значения номинальных коэффициентов вероятности. Комиссия была вынуждена учесть широкий разброс мнений. Так как данные из Японии получены для большой популяции людей всех возрастов и обоего. пола и поскольку дозы были довольно равномерно распределены по всему телу, эти данные принимались в качестве основного источника информации. Интерпретация данных об облученных пациентах со спондилитом приводит к более низкой оценке годовой вероятности возникновения смертельного рака на единицу дозы – примерно в 2 раза. Более низкие оценки также могут быть получены на основании исследования пациенток, лечившихся по поводу рака шейки матки, хотя дозы при этом распределялись весьма неравномерно. Эти результаты подтверждают точку зрения Комиссии, что недооценка риска на основе данных по Хиросиме и Нагасаки маловероятна.