Смекни!
smekni.com

Данного проекта возникла в результате изучения темы «Движения» в курсе геометрии 9 класса, когда рассматривался вопрос практического применения движений в повседневной жизни (стр. 1 из 3)

Муниципальное общеобразовательное учреждение

Озёрская средняя общеобразовательная школа

ГЕОМЕТРИЧЕСКИЕ ПАРКЕТЫ

проект

ВЫПОЛНИЛ:

Косарев Алексей Борисович

РУКОВОДИТЕЛЬ:

Жмулюкина Надежда Николаевна

Поселок им. 2-ой Пятилетки

2008 год

СОДЕРЖАНИЕ

· Введение 3

· Основная часть 4

1. История развития движений 4

2. Движения 7

2.1. Виды движений 9

2.2. Параллельный перенос 9

2.3. Осевая симметрия 10

2.4. Центральная симметрия 11

2.5. Поворот 12

3. Аналитическое выражение движения 13

4. Различные виды паркетов 14

4.1. Паркеты из правильных многоугольников 14

4.2. Паркеты из произвольных многоугольников 17

4.3. Паркеты из фигурок животных 18

5. Шевели мозгами 19

6. Графическое представление проекта 21

· Заключение 22

· Используемая литература 23

ВВЕДЕНИЕ

Тема данного проекта возникла в результате изучения темы «Движения» в курсе геометрии 9 класса, когда рассматривался вопрос практического применения движений в повседневной жизни.

Цели и задачи исследования

- Показать практическое применение темы: «Движение».

- Установить все возможные случаи покрытия плоскости многоугольниками.

- Рассмотреть нестандартные приёмы покрытия плоскости.

- Показать применение паркетов в дизайне помещений.

Гипотеза исследования

Существуют многоугольники, которыми можно покрыть плоскость без просветов и двойных покрытий.

Ход исследования

- Паркет (или мозаика) - бесконечное семейство многоугольников, покрывающее плоскость без просветов и двойных покрытий.

- Некоторые определения паркета не ограничиваются многоугольниками; в этом случае паркетом называется покрытие плоскости без пропусков и перекрытий заданными фигурами (в частном случае - многоугольниками, правильными или неправильными, выпуклыми или невыпуклыми). В таком случае даже для паркетов из многоугольников может не соблюдаться требование "два многоугольника должны иметь общую вершину, общую сторону или совсем не иметь общих точек"; кроме того, появляется множество разнообразных паркетов, состоящих не из многоугольников, а из криволинейных фигур.

ИСТОРИЯ РАЗВИТИЯ ДВИЖЕНИЙ

Первым, кто начал доказывать некоторые геометрические предложения, считается древнегреческий математик Фалес Милетский (625-547г. до н.э.).

Именно благодаря Фалесу геометрия начала превращаться из свода практических правил в подлинную науку. До Фалеса доказательств просто не существовало!

Каким же образом проводил Фалес свои доказательства. Для этой цели он использовал движение.

Движение это преобразования фигур, при котором сохраняются расстояния между точками. Если две фигуры точно совместить друг с другом посредством движения, то эти фигуры одинаковы, равны.

Именно таким путем Фалес доказал ряд первых теорем геометрии. Если плоскость повернуть как твердое целое вокруг некоторой точки О на 1800, то луч ОА перейдет в его продолжение ОА1. При таком повороте (его еще называют центральной симметрией с центром О) каждая точка А перемещается в такую точку А1, что О является серединой отрезка АА1

Пусть О общая вершина вертикальных углов АОВ и А1ОВ1. Но тогда ясно, что при повороте на 1800 стороны одного из двух вертикальных углов как раз перейдут в стороны другого, т. е. эти два угла совместятся. Значит, вертикальные углы равны.

Доказывая равенство углов при основании равнобедренного треугольника, Фалес воспользовался осевой симметрией: две половинки равнобедренного треугольника он совместил перегибанием чертежа по биссектрисе угла при вершине. Тем же способом Фалес доказал, что диаметр делит круг пополам.

Применял Фалес и еще одно движение параллельный перенос, при котором все точки фигуры смещаются в определенном направлении на одно и тоже расстояние. С его помощью он доказал теорему, которая сейчас носит его имя: если на одной стороне угла отложить равные отрезки и провести через концы этих отрезков параллельные прямые до пересечения со второй стороны угла, то на другой стороне угла также получатся равные отрезки.

Во времена античной истории идеей движения пользовался знаменитый Евклид, автор Начал книги, переживший более двух тысячелетий. Евклид был современником Птолемея 1, правившего в Египте, Сирии и Македонии в 305-283 до н.э.

Движения в неявном виде присутствовали, например, в рассуждениях Евклид при доказательстве признаков равенства треугольников: наложим один треугольник на другой таким-то образом. По Евклиду, две фигуры называются равными, если они могут быть совмещены всеми своими точками, т.е. перемещая одну фигуру как твердое целое, можно точно наложить ее на вторую фигуру. Для Евклида движение не было еще математическим понятием. Впервые изложенная им в началах системах аксиом стала основой геометрической теории, получившей название евклидовой геометрии. В новое время продолжается развитие математических дисциплин. В 11 веке создается аналитическая геометрия. Профессор математики Болонского университета Бонавентура Кавальери (1598-1647) издает сочинение геометрия, изложенная новым способом при помощи неделимых непрерывного. Согласно Кавальери, любую плоскую фигуру можно рассматривать как совокупность параллельных линий или следов, которые оставляет линия, передвигаясь параллельно самой себе. Аналогично дается представление о телах: они образуются при движении плоскостей.

Дальнейшее развитие теории движений связывают с именем французского математика и историка науки Мишеля Шаля (1793-1880). В 1837г. он выпускает труд исторический обзор происхождение и развитие геометрических методов в процессе собственных геометрических исследований Шаль доказывает важнейшую теорему:

Всякое меняющие ориентацию движение плоскости является либо параллельным переносом, либо поворотом.

Всякое меняющее ориентацию движение плоскости является либо осевой симметрией, либо скользящей симметрией.

Важным обогащением, которым геометрия обязана 19 веку, является создание теории геометрических преобразований, в частности, математической теорией движений. (перемещений).

К этому времени назрела необходимость дать классификаций всех существующих геометрических систем. Такую задачу решил немецкий математик Кристиан Феликс Клейн(1849 1925).

В 1872 г., выступая в должность профессора эрлангенского университета, Клейн прочитал лекцию сравнительное обозрение новейших геометрических исследований. Выдвинутая им идея переосмысления всей геометрии на основе теории движений получила название эрлангенская программа.

По Клейну, для построения той или иной геометрии нужно задать множество элементов и группу преобразований. Задача геометрии состоит в изучении тех отношений между элементами, которые остаются инвариантными при всех преобразованиях данной группы. Например, геометрия Евклида изучает те свойства фигур, которые остаются неизменными при движении. Иначе говоря, если одна фигура получается из другой движением, то у этих фигур одинаковые геометрические свойства.

В этом смысле движения составляют основу геометрии, а пять аксиом конгруэнтности выделенные самостоятельной группой в системе аксиом современной геометрии. Эту полную и достаточно строгую систему аксиом, подытожив все предыдущие исследования, предложил немецкий математик Давид гильберт(1862-1943). Его система из двадцати аксиом, разделенный на пять групп, была впервые опубликована в 1899 в книге Основание геометрии.

В 1909 г. немецкий математик Фридрих Шур (1856-1932), следуя идеям Фалкса и Клейна, разработал другую систему аксиом геометрии основанную на рассмотрении движений. В его системе, в частности, вместо группы аксиом конгруэнтности гильберта предлагается группа из трех аксиом движения.

ДВИЖЕНИЯ

Движением называется отображение плоскости на себя при котором сохраняются все расстояния между точками. Движение имеет ряд важных свойств:

Три точки, лежащие на одной прямой, при движении переходят в три точки, лежащие на одной прямой, и три точки, не лежащие на одной прямой, переходят в три точки, не лежащие на одной прямой.

Доказательство: пусть движение переводит точки А, В, С в токи А', В', С'. Тогда выполняются равенства

А'В'=АВ , А'С'=АС , В'С'=ВС (1)

Если точки А, В, С лежат на одной прямой, то одна из ни, например точка В лежит между двумя другими. В этом случае АВ+ВС=АС, и из равенства(1) следует, что А'С'+В'С'=А'С'. А из этого следует, что точка В' лежит между точками А' и С'. Первое утверждение доказано. Второе утверждение докажем методом от противного: Предположим, что точки А', В', С' лежат на одной прямой даже в том случае, если точки А,В,С не лежат на одной прямой, то есть являются вершинами треугольника. Тогда должны выполнятся неравенства треугольника:

АВ≤АС+ВС

АС≤АВ+ВС

ВС≤АВ+АС

но из равенства (1) следует что те же неравенства должны выполнятся и для точек А', В', С' следовательно точки А', В', С' должны быть вершинами треугольника, следовательно точки А', В', С' не должны лежать на одной прямой.

Отрезок движения переводится в отрезок.

При движении луч переходит в луч, прямая в прямую.

Треугольник движением переводится в треугольник.

Движение сохраняет величину углов.

При движении сохраняются площади многоугольных фигур.