Смекни!
smekni.com

4. Оценивание параметров структурной модели (стр. 3 из 5)

у =B0+B1x

Она позволяет получить значения эндогенной переменной с через переменную х. Рассчитав коэффициенты приведенной формы модели 0, А1, В0, В1, можно перейти к коэффициентам структурной модели а и b, подставив в первое уравнение приве­денной формы выражение переменной х из второго уравнения приведенной формы модели. Приведенная форма модели, хотя и позволяет получить значения эндогенной переменной через зна­чения экзогенных переменных, аналитически уступает структур­ной форме модели, так как в ней отсутствуют оценки взаимосвя­зи между эндогенными переменными.

3.ПРОБЛЕМА ИДЕНТИФИКАЦИИ

При переходе от приведенной формы модели к структурной исследователь сталкивается с проблемой идентификации. Иден­тификация - это единственность соответствия между приведен­ной и структурной формами модели.

Рассмотрим проблему идентификации для случая с двумя эн­догенными переменными. Пусть структурная модель имеет вид:

y^1=b12y2+a11x1+a12x2+…+a1mxm,

y^2=b21y1+a21x1+a22x2+…+a2mxm.

где yl и у2совместные зависимые переменные.

Из второго уравнения можно выразить yl следующей фор­мулой:

Тогда в системе имеем два уравнения для эндогенной пере­менной у1с одним и тем же набором экзогенных переменных, но с разными коэффициентами при них:

Наличие двух вариантов для расчета структурных коэффици­ентов в одной и той же модели связано с неполной ее идентифи­кацией. Структурная модель в полном виде, состоящая в каждом уравнении системы из и эндогенных и т экзогенных перемен­ных, содержит n(n - 1 + т) параметров. Так, при n = 2 и т = 3 полный вид структурной модели составит:

y^1=b12y2+a11x1+a12x2+a13x3,

y^2=b21y1+a21x1+a22x2+a23x3.

Как видим, модель содержит восемь структурных коэффици­ентов, что соответствует выражению n • (n — 1 + m).

Приведенная форма модели в полном виде содержит и/и пара­метров. Для нашего примера это означает наличие шести коэф­фициентов приведенной формы модели. В этом можно убедить­ся, обратившись к приведенной форме модели, которая будет иметь вид:

Действительно, она включает в себя шесть коэффициентов 5,у.

На основе шести коэффициентов приведенной формы моде­ли требуется определить восемь структурных коэффициентов рассматриваемой структурной модели, что, естественно, не мо­жет привести к единственности решения. В полном виде струк­турная модель содержит большее число параметров, чем приве­денная форма модели. Соответственно и • (и — 1 + /и) параметров структурной модели не могут быть однозначно определены из и/и параметров приведенной формы модели.

Для того чтобы получить единственно возможное решение для структурной модели, необходимо предположить, что некото­рые из структурных коэффициентов модели ввиду слабой взаи­мосвязи признаков с эндогенной переменной из левой части си­стемы равны нулю. Тем самым уменьшится число структурных коэффициентов модели. Так, если предположить, что в нашей модели a13 = 0 и a21 = 0, то структурная модель примет вид:

y^1=b12y2+a11x1+a12x2,

y^2=b21y1+a21x1+a22x2.

В такой модели число структурных коэффициентов не пре­вышает число коэффициентов приведенной модели, которое равно шести. Уменьшение числа структурных коэффициентов модели возможно и другим путем: например, приравниванием некоторых коэффициентов друг к другу, т. е. путем предположе­ний, что их воздействие на формируемую эндогенную перемен­ную одинаково. На структурные коэффициенты могут наклады­ваться, например, ограничения вида bij + аij = 0.

С позиции идентифицируемости структурные модели можно подразделить на три вида:

• идентифицируемые;

• неидентифицируемые;

• сверхидентифицируемые.

Модель идентифицируема, если все структурные ее коэффици­енты определяются однозначно, единственным образом по коэф­фициентам приведенной формы модели, т. е. если число парамет­ров структурной модели равно числу параметров приведенной формы модели. В этом случае структурные коэффициенты моде­ли оцениваются через параметры приведенной формы модели и модель идентифицируема. Рассмотренная выше структурная мо­дель (1.4) с двумя эндогенными и тремя экзогенными (предопределенными) переменными, содержащая шесть структурных ко­эффициентов, представляет собой идентифицируемую модель.

Модель неидентифицируема, если число приведенных коэф­фициентов меньше числа структурных коэффициентов, и в ре­зультате структурные коэффициенты не могут быть оценены че­рез коэффициенты приведенной формы модели. Структурная модель в полном виде (1.3), содержащая п эндогенных и т предо­пределенных* переменных в каждом уравнении системы, всегда неидентифицируема.

Модель сверхидентифицируема, если число приведенных ко­эффициентов больше числа структурных коэффициентов. В этом случае на основе коэффициентов приведенной формы можно по­лучить два или более значений одного структурного коэффици­ента. В этой модели число структурных коэффициентов меньше числа коэффициентов приведенной формы. Так, если в структур­ной модели полного вида (1.3) предположить нулевые значения не только коэффициентов а13 и а21(как в модели (1.4)),

но и a22 = 0 система уравнений станет сверхидентифицируемой:

В ней пять структурных коэффициентов не могут быть одно­значно определены из шести коэффициентов приведенной фор­мы модели. Сверхидентифицируемая модель в отличие от не­идентифицируемой модели практически решаема, но требует для этого специальных методов исчисления параметров.

Структурная модель всегда представляет собой систему сов­местных уравнений, каждое из которых необходимо проверять на идентификацию. Модель считается идентифицируемой, если каждое уравнение системы идентифицируемо. Если хотя бы одно из уравнений системы неидентифицируемо, то и вся модель счи­тается неидентифицируемой. Сверхидентифицируемая модель содержит хотя бы одно сверхидентифицируемое уравнение.

Выполнение условия идентифицируемости модели проверя­ется для каждого уравнения системы. Для того чтобы уравнение было идентифицируемо, нужно, чтобы число предопределенных переменных, отсутствующих в данном уравнении, но присутству­ющих в системе, было равно числу эндогенных переменных в данном уравнении без одного.

Если обозначить число эндогенных переменных в j-м уравне­нии системы через Н, а число экзогенных (предопределенных) переменных, которые содержатся в системе, но не входят в дан­ное уравнение, — через D, то условие идентифицируемости моде­ли может быть записано в виде следующего счетного правила:

D + 1 = Н— уравнение идентифицируемо;

D + 1 < Н — уравнение неидентифицируемо;

D + 1 > Н— уравнение сверхидентифицируемо.

Предположим, рассматривается следующая система одновре­менных уравнений:

Первое уравнение точно идентифицируемо, ибо в нем при­сутствуют три эндогенные переменные — у1, у2, у3, т. е. Н = 3, и две экзогенные переменные — x1, и х2, число отсутствующих экзоген­ных переменных равно двум — x3 и х4, D = 2. Тогда имеем равен­ство: D + 1 = Н, т. е. 2 + 1 = 3, что означает наличие идентифици­руемого уравнения.

Во втором уравнении системы H=2(yl и y2) и D= I (x4). Ра­венство D + 1 = Н, т.е. 1 + 1 = 2. Уравнение идентифицируемо.

В третьем уравнении системы Н=3(у1, у2, у3), a D = 2(xl и х2). Следовательно, по счетному правилу D + 1 = Н, и это уравнение идентифицируемо. Таким образом, система (5.6) в целом иденти­фицируема.

Предположим, что в рассматриваемой модели a2l = 0 и a33 = 0. Тогда система примет вид:

Первое уравнение этой системы не изменилось. Система по-прежнему содержит три эндогенные и четыре экзогенные пе­ременные, поэтому для него D = 2 при Н= 3, и оно, как и в предыдущей системе, идентифицируемо. Второе уравнение имеет H=2 u D = 2(xl, х4), так как 2 + 1 > 2. Данное уравнение сверхидентифицируемо. Также сверхидентифицируемым оказывается и третье уравнение системы, где Н= 3 1, у2, у3) и D=3 (x1x2, x3), т.е. счетное правило составляет неравенство: 3 + 1 > 3 или D + 1>Н. Модель в целом является сверхидентифицируемой.