Продифференцировав выражения (5) по t, подставим значения производных в уравнениях (4). Принимая во внимание формулы (5), получаем систему уравнений относительно производных, новых переменных а и φ:
разрешая систему (6) относительно
Система дифференциальных уравнений (7) эквивалентна рассматриваемой исходной системе (4) или, что то же самое, уравнению (1) .
Из системы (7) видно, что медленные и быстрые движения для
Усредняя правые части системы (7) мы получим (8):
где принято обозначение
Таким образом, «укорочёнными уравнениями» для системы (7) являются уравнения (3), где
Уравнения (8) будем называть укороченными уравнениями или уравнениями Ван-дер-Поля. Они значительно проще исходной системы (7), поскольку первое уравнения может быть проинтегрировано независимо от второго. В системе (8) медленные и быстрые движения для
Интегрируя первое из уравнений этой системы, мы находим закон изменения амплитуды. Очень часто в прикладных задачах бывает достаточно найти только зависимость амплитуды от времени. В рассматриваемой теории для этого достаточно найти решение уравнения первого порядка (в общем случае нелинейного).
Определение фазы сводится к квадратурам. Наибольший интерес обычно представляет не сама фаза, а скорость ее изменения в зависимости от амплитуды. Ответ на этот вопрос дает непосредственно второе уравнение системы (8).
Итак, метод Ван-дер-Поля решения уравнения (1) состоит в переходе от переменной х и y к переменным а и
Система (8) позволяет найти возможные стационарные (автоколебательные) режимы, т.е. режимы, при которых амплитуда остается неизменной. Полагая
Заметим, что уравнение (10) совпадает с одним из тех уравнений, которое мы получили бы, если бы рассматривали уравнение (1) как квазилинейное и разыскивали периодические решения методом Пуанкаре.
Трансцендентное уравнение (10) может совсем не иметь действительных решений. Это будет означать, что в системе стационарные колебания невозможны. Уравнение (10) может иметь одно или несколько решений, в случаях консервативных систем оно удовлетворяется тождественно. В самом деле, в этом случае функция f зависит только от переменной x, поэтому уравнение (10) примет вид:
Так как
Обозначим через F
Тогда
то есть уравнение (10а) удовлетворяется тождественно по
Обоснование метода Ван-дер-Поля
Л. И. Мандельштамом и Н. Д. Папалекси.
Рассмотрим систему стандартного вида
Уравнение Ван-дер-Поля также можно привести к системе стандартного вида:
Сделаем замену
тогда:
Будем считать
Среднее значение функции
При этом усреднении интегрирование ведется по третьей переменной t в предположении, что
Наряду с точной системой рассматривается приближенная
Обе системы, приближенная и точная, решаются при начальных условиях
Для задач Коши (1) и (4), (3) и (4) справедлива следующая теорема:
Теорема. Пусть при всех t и в некоторой области переменных
0
Доказательство:
Решение задач Коши (1) и (4), (3) и (4) существует и единственно. Поэтому решение (1) и (4) будем искать методом приближений.
Обозначим
Функция
Пусть
Интеграл
В промежутке