Смекни!
smekni.com

Евгений Дмитриевич Елизаров (стр. 22 из 31)

Вот и обратимся именно к ним, ибо именно они и являются точной моделью соотношения качественных и количественных изменений.

Теория относительности утверждает, что движение со скоростью, которая превышает световую, невозможно, ибо приближение к ней влечет за собой неограниченное возрастание массы движущегося объекта, а значит, и экспоненциальное возрастание энергетических затрат, связанных с его ускорением. Другими словами, сообщение скорости света любому материальному объекту, сколь бы ничтожной (но вместе с тем отличной от нуля) ни была его исходная масса, потребовало бы энергетических ресурсов всей Вселенной.

Некоторую трудность может вызвать лишь вопрос о том, что именно является энергетическим «донором» ускорения. Понятно, что основных вариантов – два. В одном случае донором выступает потенциал внешнего объекта, в другом расходуется собственный потенциал тела. (Впрочем, возможны и промежуточные решения, когда в придании ускорения участвуют оба объекта.) Сообщение ускорения предполагает затрату определенного количества энергии, или – при известных допущениях – мы можем «конвертировать» в энергию собственную массу системы и обратить ее на ускорение того, что остается после подобной «конвертации». Если донор внешний, конвертируется внешняя масса, если внутренний – своя собственная.

В принципе, общая энергетика единой системы «энергетический донор – движущееся тело» должна быть независимой от того, что именно является донором. Поэтому на сообщение заранее заданного ускорения должна расходоваться одна и та же энергия или конвертироваться одна и та же масса как в случае внешнего источника энергии, так и в случае расхода своего собственного потенциала.

Выразим энергетические соотношения с помощью простого графика, одной координатной осью которого является скорость (от нуля до скорости света), другой масса (от нуля до единицы). Таким образом, зависимость между достигаемой скоростью и расходуемой массой предстанет в виде некоторой кривой, исходящей из центра координат (0, 0) и оканчивающейся в точке, проекция которой на ось скоростей совпадает со скоростью света, на ось масс – с единицей.

Легко понять, что любая промежуточная проекция на любую из координатных осей этого графика даст представление о второй величине. Иначе говоря, если мы заранее определим ту скорость, которую собираемся сообщить нашему объекту, то перпендикуляр, отброшенный на другую ось координат, покажет нам, какую долю начальной массы энергетического «донора» необходимо конвертировать в энергию для того, чтобы сообщить ему нужное ускорение. И наоборот: если мы заранее определим ту долю начальной массы, которую готовы конвертировать в энергию, проекция на другую ось покажет нам ту (максимальную) скорость, которую (на минуту забыв о неизбежных энергетических потерях) в принципе можно сообщить телу.

График будет одним и тем же как для внешнего источника энергии, так и для внутреннего. Разница лишь в следующем. В первом случае под единицей должна пониматься масса того внешнего объекта, или той совокупности объектов, которому (которой) отпускается роль энергетического «донора». В логическом пределе – это может составить полную массу всей Вселенной. Во втором – собственная начальная масса именно того тела, которому и нужно сообщить ускорение.

В соответствии с известными положениями теории относительности сообщение максимальной скорости (с ) может быть достигнуто в случае расходования собственного потенциала тела – за счет обращения всей его массы, в случае внешнего энергетического источника – за счет конвертирования всей массы Вселенной. Другими словами, скорость света может быть достигнута только тогда, когда в нуль обращается либо собственная масса тела, либо полная масса всей Вселенной. Ясно, что ни тот, ни другой вариант физически невозможны, но как некий математический предел они вправе учитываться.

В любом случае предельная скорость, которую практически можно сообщить телу, будет далека от скорости света даже там, где его масса составляет бесконечно малую, но все же отличную от нуля величину. Поэтому здесь речь может идти лишь о всем спектре промежуточных значений между нулем и этой по сегодняшним понятиям предельной физической величиной. Но именно потому, что наш график описывается математической кривой , мы обязаны заключить: полное равенство одноименных отрезков каждой из осевых шкал не достигается ни в одном – даже сколь угодно узком – интервале значений. В том же случае, когда сопоставляются отрезки, тяготеющие к противоположным полюсам координатных осей, они могут отличаться друг от друга на много порядков.

Кстати, здесь‑то со всей наглядностью и обнаруживается существо нашего вопроса: «два с какого края?» Анализируя получаемые здесь кривые, мы обязаны сделать вывод: «два плюс два» может только неограниченно стремиться к «четырем», да и то лишь в том случае, когда суммируются смежные отрезки измерительных шкал. При этом длины этих смежных отрезков, в свою очередь, должны неограниченно стремиться к нулю. Полный же спектр значений всех результатов будет простираться от «четырех» до бесконечности. Иными словами, с абсолютной точностью измеренный результат составит сколько угодно, только не «четыре» !

Выход за пределы скорости света может быть осуществлен (если, разумеется, физическое решение вообще существует) только за счет действия сил, управляющих развитием какой‑то более широкой – сегодня еще неизвестной науке – реальности. Но, как уже говорилось выше, этой более широкой реальности будет присуща совершенно иная размерность, совершенно иное «количество». Так, уже не только фантастическая литература говорит сегодня о возможности выхода в некоторое гипотетическое «подпространство», это понятие является не вполне чуждым и современной физике. Но «подпространство» должно измеряться уже совсем не километрами и не световыми годами, ибо вовсе не исключено, что и свету туда дорога «заказана», – там обязано действовать совершенно иное «количество». Впрочем, и в этом гипотетическом континууме рано или поздно должны обнаружиться какие‑то свои количественные аномалии, которые, в свою очередь, со временем смогут стать и стимулом, и ориентиром дальнейшего научного поиска.

Другим примером могло бы служить преодоление абсолютного температурного нуля. Ведь снижение скорости теплового движения молекул до нуля является именно абсолютным непреодолимым пределом для любых микроэволюционных изменений любого материального тела. Даже самое буйное сознание отказывается вообразить действительность, в которой действовали бы какие‑то отрицательные значения скоростей. Но как знать, может, вовсе не исключено, что выход в какие‑то иные измерения физической реальности способен в будущем обнаружить возможность перехода из сферы теплового движения молекул в закритический «подтемпературный» диапазон.

Таким образом, и здесь решение (если, разумеется, оно существует) может быть достигнуто только в сфере действия каких‑то иных, более фундаментальных, чем известные ныне, механизмов. Но и там, в новых измерениях объективной реальности, объединяющим оба диапазона «количеством» будет уже не температурная, но какая‑то иная шкала градации природных явлений.

Однако пока эти рубежи не только не преодолены, но даже неизвестно, можно ли вообще преодолеть их. Поэтому сегодня, на том уровне развития средств нашего познания, который сложился, мы вынуждены мириться с тем, что в области этих критических точек даже микроскопические продвижения к расчисленному теоретическому пределу потребуют от нас неограниченно возрастающих энергетических расходов.

Таким образом, привлекая на помощь современные нам примеры, «качество» можно уподобить некоторой «черной дыре», откуда никакими (чисто «количественными») усилиями не может вырваться абсолютно ничто. Мы знаем, что любое тяготение может быть преодолено увеличением скорости удаления материального тела от его центра; но здесь даже свет не в состоянии вырваться наружу. Собственно, поэтому‑то «дыра» и называется «черной».

Так что и в этом случае «два плюс два» может только неограниченно стремиться к «четырем», да и то лишь при сложении смежных отрезков измерительных шкал бесконечно малой длины. Отклонение же от этого результата может достигать сколь угодно больших величин. Словом, и здесь с предельной точностью измеренный результат может составить сколько угодно, только не «четыре» .

Таким образом, в понимании существа великого закона перехода количественных изменений в качественные обнаруживается все то же, что увиделось нам и в анализе нашей арифметической задачи. Сначала охотное согласие, подкрепляемое стандартным набором расхожих штампов, затем – едва ли не полное отрицание того, во что так легко уверовалось вначале, и лишь потом – бездна, в которую еще только предстоит по‑настоящему погружаться.

Дело в том, что центральное место в контексте этого философского закона занимает такое понятие, как «качественный скачок». Однако в этом «скачке» никоим образом нельзя видеть некое подобие мгновенной перемены сцены: занавес упал, занавес поднялся – и вот перед нами уже совсем иная картина. Ничуть не бывало, как за опущенным занавесом совершается какая‑то своя стремительная осмысленная работа по перемене костюмов и декораций, так и во время качественного скачка совершается какое‑то свое действие. Это вовсе не мгновенная трансмутация качественных состояний из одного в другое, но процесс , в основе которого действуют какие‑то свои скрытые механизмы. Просто имеющиеся в нашем распоряжении средства познания, включая нашу логику (и формальную, и диалектическую), пока не в состоянии эти механизмы раскрыть (может быть, именно поэтому процесс и предстает перед нами в виде внезапного скачка). Отсюда и вся та таинственность, которая окружает их действие.