Смекни!
smekni.com

Тема спектральное представление сигналов ясогласен, что все состоит из атомов. Но какое нам до этого дело? Ведь мы занимаемся вопросом о природе богов! (стр. 1 из 9)

СИГНАЛЫ и ЛИНЕЙНЫЕ СИСТЕМЫ.

Signals and linear systems

Тема 4. СПЕКТРАЛЬНОЕ ПРЕДСТАВЛЕНИЕ СИГНАЛОВ

Я согласен, что все состоит из атомов. Но какое нам до этого дело? Ведь мы занимаемся вопросом о природе богов!

Марк Туллий Цицерон. О природе богов. Римский философ и политик, 1 в.д.н.э.

Природа экономна. Если и богов она стряпает из атомов, то каждым сигналом в отдельности тем более заниматься не будет. А значит, они тоже из чего-то состоят!

Владимир Петухов. Взгляд с горы. Осетинский геофизик Уральской школы, XX в.

Содержание

1. Разложение сигналов по гармоническим функциям. Понятие собственных функций. Ряды Фурье. Тригонометрическая форма. Параметры эффекта Гиббса.

2. Непрерывные преобразования Фурье и Лапласа. Интеграл Фурье. Тригонометрическая форма. Полезные соотношения. Преобразование Лапласа. Обобщенный ряд Фурье.

3. Основные свойства преобразований Фурье. Линейность. Свойства симметрии. Изменение аргумента функции. Теорема запаздывания. Преобразование производной. Преобразование интеграла. Преобразование свертки. Преобразование произведения. Производная свертки Спектры мощности. Равенство Парсеваля.

4. Спектры некоторых сигналов. Единичные импульсы. Гребневая функция. Спектр прямоугольного импульса. Треугольные импульсы. Экспоненциальный импульс. Функции Лапласа и Гаусса. Гармонические колебания. Радиоимпульс.

Введение.

Спектральная (частотная) форма представления сигналов использует разложение сигнальных функций на периодические составляющие.

Периодичность гармонических колебаний исследовал еще в VI веке до нашей эры Пифагор и даже распространил ее на описание гармонического движения небесных тел. Термин "spectrum" впервые применил И. Ньютон в 1571 году при описании разложения на многоцветную полосу солнечного света, проходящего через стеклянную призму, и дал первую математическую трактовку периодичности волновых движений. В 18-м веке Д. Бернулли, Л. Эйлер и Ж. Лагранж в своих работах по математике и физике показали, что произвольные периодические функции представляют собой суммы простейших гармонических функций – синусов и косинусов кратных частот. Эти суммы получили название рядов Фурье, после того как в 1807 году французский инженер Жан Батист Фурье обосновал метод вычисления коэффициентов тригонометрического ряда, которым можно отображать с абсолютной точностью (при бесконечном числе членов ряда) или аппроксимировать с заданной точностью (при ограничении числа членов ряда) любую периодическую функцию, определенную на интервале одного периода T = b-a, и удовлетворяющую условиям Дирехле (ограниченная, кусочно-непрерывная, с конечным числом разрывов 1-го рода). Разложение сигнала на гармонические функции получило название прямого преобразования Фурье (Fourier transform). Обратный процесс – синтез сигнала по гармоникам – называется обратным преобразованием Фурье (inverse Fourier transform).

Жан-Батист Жозеф ФУРЬЕ. Jean-Baptiste Joseph Fourier, 1768–1830.

Французский математик. Получил образование в церковной школе и военном училище, затем работал преподавателем математики. На протяжении всей жизни активно занимался политикой, арестован в 1794 году за защиту жертв террора Французской революции, выпущен из тюрьмы после смерти Робеспьера. Принимал участие в создании знаменитой Политехнической школы в Париже. Сопровождал Наполеона в Египет и был назначен губернатором Нижнего Египта. По возвращении во Францию в 1801 году назначен губернатором одной из провинций Франции. В 1822 году стал постоянным секретарем Французской академии наук.

На первых этапах своего развития данное направление, получившее название гармонического анализа, имело теоретический характер и использовалось в естественных науках для выявления и изучения состава периодических составляющих в различных явлениях и процессах (активность солнца, девиация магнитного поля Земли, метеорологические наблюдения, и т.п.). Теория гармонического анализа была развита в работах Дирехле, Гаусса, Чебышева, Винера и других с распространением на произвольные функции с бесконечным периодом (интегралы Фурье).

Положение резко изменилось с появлением электро- и радиотехнических отраслей науки и техники, где гармонический состав сигналов приобрел конкретный физический смысл, а математический аппарат спектрального преобразования функций стал основным инструментом анализа и синтеза сигналов и систем. В настоящее время спектральный анализ является основным методом обработки экспериментальных данных во многих отраслях науки и техники.

Спектральное преобразование представляет собой перевод исходных динамических функций на новый координатный базис. Выбор рациональной ортогональной системы координатного базиса функций зависит от цели исследований и определяется стремлением максимального упрощения математического аппарата анализа, преобразований и обработки данных. В качестве базисных функций используются полиномы Чебышева, Эрмита, Лежандра и другие. Наибольшее распространение получило преобразование сигналов в базисах гармонических функций: комплексных экспоненциальных exp(j2pft) и вещественных тригонометрических синус-косинусных функций, связанных друг с другом формулой Эйлера. Это объясняется тем, что гармонические колебания сохраняют свою форму при прохождении через любую линейную цепь, изменяются только амплитуда и фаза колебаний, что удобно для анализа систем преобразования сигналов.

Ряды Фурье произвольных периодических сигналов могут содержать бесконечно большое количество членов. Одним из достоинств преобразования Фурье является то, что при ограничении ряда Фурье до любого конечного числа его членов обеспечивается наилучшее по средней квадратической погрешности приближение к исходной функции (для данного количества членов).

Спектральный анализ часто называют частотным анализом. Термин "частотный" обязан происхождением обратной переменной f = 1/|t| временного представления сигналов и функций. Понятие частотного преобразования не следует связывать только с временными функциями, т.к. математический аппарат преобразования не зависит от физического смысла независимых переменных. Так, при переменной "х", как единице длины, значение f представляет собой пространственную частоту с размерностью 1/|х| - число периодических изменений сигнала на единице длины.

В математическом аппарате спектрального анализа удобно использовать угловую частоту w = 2pf. Для процессов по другим независимым переменным в технической литературе вместо индекса частоты f часто используется индекс v, а для угловой частоты индекс k = 2pv, который называют волновым числом.

4.1. Разложение сигналов по гармоническим функциям [1, 24, 25].

Процедура анализа спектральным методом прохождения произвольного сигнала x(t) через произвольную линейную систему с импульсным откликом h(t) включает:

  • определение спектральной функции X(w) ↔ x(t) входного сигнала с помощью прямого преобразования Фурье;
  • определение комплексной передаточной характеристики H(w) ↔ h(t) линейной системы;
  • определение спектральной функции сигнала Y(w) = X(w) H(w) на выходе системы;
  • определение выходного сигнала y(t) ↔ Y(w) с помощью обратного преобразования Фурье.

Таким образом, анализ переходного процесса, вызываемого в системе входным сигналом, сводится к анализу стационарных решений воздействия на систему простых гармонических составляющих, каждая из которых действует от t = -∞ до ∞.

Помимо задач, связанных с анализом в системах переходных процессов, спектральными методами решаются также задачи синтеза систем, обладающих требуемой передаточной характеристикой и позволяющей получить на выходе сигнал заданной формы при определённом входном воздействии на систему.

Понятие собственных функций. Удобство использования частотного представления сигналов заключается в том, что гармонические функции являются собственными функциями операций переноса, интегрирования, дифференцирования и других линейных операций, инвариантных по координатам. Они проходят через линейные системы без изменения формы и частоты гармоники, изменяется только начальная фаза и амплитуда колебаний.

Допустим, что сигнал является линейной комбинацией функций синуса и косинуса:

s(х) = А sin(х)+B cos(х).

Сдвинем сигнал по аргументу на величину h. При этом получаем:

s(х+h) = C sin(х)+D cos(х),

C = А cos(h) – B sin(h), D = A sin(h) + B cos(h),

где коэффициенты C и D, как и в исходном выражении коэффициенты А и В, не зависят от аргумента, при этом C2+D2 = А22. Таким образом, при произвольном переносе функции по аргументу (а равно и при интегрировании, дифференцировании и других линейных преобразованиях) любую линейную комбинацию синуса и косинуса можно представить линейной комбинацией этих же функций.

Экспоненциальная комплексная запись гармонических функций делает это свойство еще нагляднее. Для произвольной гармонической функции имеем:

cos(wt-j) = A cos(wt)+B sin(wt),

где A = cos(j), B = sin(j), j - начальный фазовый угол колебания при t = 0. Переходя к комплексной записи данной функции с использованием тождеств Эйлера

cos(wt) = [ехр(jwt)+exp(-jwt)]/2, sin(wt) = [ехр(jwt)-exp(-jwt)]/2j,

получаем:

cos(wt-j) = C exp(jwt)+C*exp(-jwt),

где: C = 0,5 exp(-jj), C* = 0,5 exp(jj) – величина, комплексно сопряженная с С. Применяя в качестве гармонической составляющей разложения сигнала функцию ехр(jwt), можно рассматривать вторую функцию ехр(-jwt), комплексно сопряженную с первой, как такую же составляющую, но с отрицательной частотой. Естественно, что отрицательная частота является математической абстракцией, но нужно помнить, что пара таких комплексно сопряженных составляющих в сумме всегда дает вещественную функцию, т.е. является отображением (образом) вещественной функции в новом математическом пространстве, базисом которого являются комплексные экспоненциальные функции.