Смекни!
smekni.com

Тема спектральное представление сигналов ясогласен, что все состоит из атомов. Но какое нам до этого дело? Ведь мы занимаемся вопросом о природе богов! (стр. 6 из 9)

Произвольный исходный сигнал может быть задан в одностороннем варианте (0-Т), но четная и нечетная части этого сигнала занимают интервал от –Т до Т, при этом на левой половине числовой оси (от –Т до 0) эти два сигнала компенсируют друг друга, давая нулевые значения.

Рис. 4.3.2. Свойства четности преобразования.

3. Изменение аргумента функции (сжатие или расширение сигнала) приводит к обратному изменению аргумента ее фурье-образа и обратно пропорциональному изменению его модуля. Так, если s(t) Û S(w), то при изменении длительности сигнала с сохранением его формы (растяжении сигнала по временной оси), т.е. для сигнала с новым аргументом s(x) = s(at) при x=at, получаем:

s(at) Û

s(at)exp(-jwt) dt = (1/a)
s(x)exp(-jxw/a) dx

s(at) Û (1/a) S(w/a). (4.3.2')

Выражение (4.3.2') действительно при а>0. При а<0 происходит зеркальный поворот сигнала относительно вертикальной оси, а замена переменной t=x/a вызывает перестановку пределов интегрирования и, соответственно, изменение знака спектра:

s(at) Û -(1/a) S(w/a). (4.3.2'')

Обобщенная формула изменения аргумента:

s(at) Û (1/|a|) S(w/a), a ≠ 0 (4.3.2)

Если под аргументом функции и ее спектра понимать определенные физические единицы, например, время - частота, то отсюда следует: чем короче по своей длительности сигнал, тем шире по частоте его спектр, и наоборот. Это можно наглядно видеть на рис. 4.3.1. для сигналов s1(k) и s2(k) и их спектров S1(w) и S2(w).

От изменения аргумента функций следует отличать изменение масштаба представления функций. Изменение масштаба аргументов изменяет оцифровку числовых осей отображения сигналов и их спектров, но не изменяет самих сигналов и спектров. Так, при масштабе оси времен t=1 секунда, масштаб оси частот f=1/t=1 герц, а при t=1 мксек f=1/t=1 МГц (t=at, f=1/at, a=10-6).

4. Теорема запаздывания. Запаздывание (сдвиг, смещение) сигнала по аргументу функции на интервал to приводит к изменению фазочастотной функции спектра (фазового угла всех гармоник) на величину -wto. Применяя замену переменной t-to = x, получаем:

s(t-to

s(t-to)exp(-jwt) dt =

=

s(x)exp(-jwx)exp(-jwto) dx = S(w)exp(-jwto). (4.3.3)

Совершенно очевидно, что амплитуды гармоник сигнала при его сдвиге изменяться не должны. С учетом того, что |exp(-jwto)|=1, это следует и из (4.3.3):

|S(w) exp(-jwto)| = |S(w)|.

Фазовый спектр сдвигается на -wto с линейной зависимостью от частоты:

S(w) exp(-jwto)= R(w) exp[j(j(w)]exp(-jwto)= R(w) exp[j(j(w)-wto)]. (4.3.4)

Рис. 4.3.3. Изменение спектра сигнала при его сдвиге.

Пример двух одинаковых сигналов, сдвинутых относительно друг друга на to=1, и соответствующих данным сигналам спектров приведен на рис. 4.3.3.

Аналогично нетрудно показать, что сдвиг спектра в частотной области на w0 вызывает умножение сигнала на exp(jw0t):

S(w - w0) « s(t) exp(jw0t),

что эквивалентно модуляции сигнала функцией комплексной экспоненты во временной области.

5. Преобразование производной (дифференцирование сигнала):

s(t) = d[y(t)]/dt = d[

Y(w) exp(jwt) dw]/dt =
Y(w) [d(exp(jwt))/dt] dw =

=

jw Y(w) exp(jwt) dw Û jw Y(w). (4.3.5)

Дифференцирование сигнала отображается в спектральной области простым умножением спектра сигнала на оператор дифференцирования сигнала в частотной области jw, что эквивалентно дифференцированию каждой гармоники спектра. Умножение на jw приводит к обогащению спектра производной сигнала высокочастотными составляющими (по сравнению с исходным сигналом) и уничтожает составляющие с нулевой частотой.

Рис. 4.3.4. Спектры сигнала и его производной.

Пример сигнала, его производной и соответствующих им спектров приведен на рис. 4.3.4. По изменению аргумента спектра (для четного исходного сигнала он был нулевым) можно видеть, что для всех гармоник спектра появляется сдвиг фаз на p/2 (900) для положительных частот, и на -p/2 (-900) для отрицательных частот.

В общем случае, для кратных производных:

dn[y(t)]/dtn = (jw)n Y(w). (4.3.6)

При дифференцировании спектра функции соответственно получаем:

dn[S(w)]/dwn = (-jt)n s(t).

6. Преобразование интеграла сигнала в частотной области при известном спектре сигнала может быть получено из следующих простых соображений. Если имеет место

s(t) = d[y(t)]/dt Û jw Y(w) = S(w),

то должна выполняться и обратная операция: y(t) =

s(t) dt Û Y(w) = S(w)/jw. Отсюда следует:

s(t)dt Û (1/jw)S(w). (4.3.7)

Рис. 4.3.5. Сигналы и амплитудные спектры сигналов.

Оператор интегрирования в частотной области (1/jw) при w>1 ослабляет в амплитудном спектре высокие частоты и при w<1 усиливает низкие. Фазовый спектр сигнала смещается на -900 для положительных частот и на 900 для отрицательных. Пример модуля спектра сигнала и его интегральной функции приведен на рис. 4.3.5.

Формула (4.3.7) справедлива для сигналов с нулевой постоянной составляющей. При интегрировании сигналов с определенным значением постоянной составляющей С=const в правой части выражения (4.3.7) появляется дополнительное слагаемое преобразования Фурье постоянной составляющей C, которое представляет собой дельта-функцию на нулевой частоте с весовым коэффициентом, равным значению С:

(1/jw)S(w) + C·d(0).

7. Преобразование свертки сигналов y(t) = s(t) * h(t):

Y(w) =

y(t) exp(-jwt) dt =
s(t) h(t-t) exp(-jwt) dtdt.

Y(w) =

s(t) dt
h(t-t) exp(-jwt) dt.

По теореме запаздывания (4.3.3):

h(t-t) exp(-jwt) dt = H(w) exp(-jwt).

Отсюда: Y(w) =

H(w) s(t) exp(-jwt) dt = H(w)·S(w).

s(t) * h(t) Û S(w) H(w). (4.3.8)

Рис. 4.3.6. Сигналы и амплитудные спектры сигналов.

Пример выполнения свертки в частотной области приведен на рис. 4.3.6. Отметим, что частотное представление H(w) импульсного отклика h(t) линейной системы (или соответствующей линейной операции) имеет смысл частотной передаточной функции системы и позволяет определить сигнал на выходе системы (в частотной форме представления) при задании произвольного сигнала (в частотной форме) на ее входе. По существу, функция H(w) представляет собой распределение по частоте коэффициента пропускания частотных составляющих сигнала с входа на выход системы.

Таким образом, свертка функций в координатной форме отображается в частотном представлении произведением фурье-образов этих функций.

Это положение имеет фундаментальное значение в практике обработки данных.

Любая линейная система обработки данных (информационных сигналов) реализует определенную операцию трансформации сигнала, т.е. выполняет операцию свертки входного сигнала s(t) с оператором системы h(t). С использованием преобразования свертки эта операция может производиться как с динамической, так и с частотной формой представления сигналов. При этом обработка данных, представленных в цифровой форме, производится, как правило, в частотной области, т.к. может быть на несколько порядков выше по производительности, чем во временной области. Она представляет собой последовательность следующих операций.

1. Перевод сигнала в частотную область: s(t) Û S(w).

2. Умножение спектра сигнала на передаточную функцию системы: Y(w) = H(w)·S(w).

Передаточная функция системы определяется аналогичным преобразованием h(t) Û H(w) или задается непосредственно в частотном представлении, что позволяет задавать передаточные функции сколь угодно сложной формы, в том числе с разрывами и скачками, для которых во временной области потребуются операторы h(t) с бесконечной импульсной характеристикой.

3. Перевод спектра обработанного сигнала во временную область: Y(w) Û y(t).

8. Преобразование произведения сигналов y(t) = s(t)·h(t):

Y(w) =

s(t) h(t) exp(-jwt) dt =
s(t) [(1/2p)
H(w') exp(jw't) dw'] dt =