Смекни!
smekni.com

2. Определение ускорения свободного падения с помощью мая тника (стр. 1 из 6)

Муниципальное автономное общеобразовательное учреждение

«Средняя общеобразовательная школа № 141

с углубленным изучением отдельных предметов»

Советского района г. Казани

Выполнил:

Учащийся 9 класса

Шарафеев

Артур Павлович

Руководитель:

Авксентьева Г.Н.

Учитель физики

I квалификационной

категории

Казань, 2010

СОДЕРЖАНИЕ

стр.

ВВЕДЕНИЕ ……………………………………………………………….

3

1. Методы геофизической разведки …………………………………...

5

1.1. Гравиразведка ………………………………………………………..

6

1.2. Гравиметрия ………………………………………………………….

6

1.3. Маятниковые приборы ……………………………………………...

9

2. Определение ускорения свободного падения с помощью маятника ………………………………………………………………………..

11

2.1. История великого открытия. Изохронизм маятника ………………

11

2.2. Формула периода математического маятника …………………….

13

2.3. Описание лабораторной установки и методика измерений ………

15

2.4. Определение погрешности измерений ……………………………..

18

3. Плотность Земли и ее оболочек …………………………………….

20

3.1.Определение средней плотности Земли …………………………….

20

3.2. Определение плотности горных пород …………………………….

21

4. Интерпретация результатов исследования. Выводы. Геологическое истолкование данных гравиразведки ……………………………

22

ЛИТЕРАТУРА …………………………………………………………….

25

ПРИЛОЖЕНИЕ …………………………………………………………..

26


ВВЕДЕНИЕ

Экспериментально установлено, что ускорение свободного падения не зависит от массы падающего тела, но зависит от географической широты

местности и высота h подъема над земной поверхностью. При этом зависимость g от
двоякая. Во-первых, Земля – не шар, а эллипсоид вращения, то есть радиус Земли на полюсе меньше радиуса Земли на экваторе. Поэтому сила тяжести и вызываемое ею ускорение свободного падения на полюсе больше, чем на экваторе (g = 9,832 м/с2 на полюсе и g = 9, 780 м/с2 на экваторе).

Во-вторых, Земля вращается вокруг своей оси и это влияет на ускорение свободного падения, приводя к его зависимости от географической широты местности. Установлено, что на географической широте 450 у поверхности Земли ускорение свободного падения равно 9,80665 м/с2 (округленно 9,81 м/с2). Для расчетов, не требующих большой точности, значение ускорения свободного падения во всех точках поверхности Земли принято считать одинаковым и равным 9,8 м/с2.

Земля не является однородным шаром. там, где плотность земного вещества больше, больше сила притяжения и больше ускорение свободного падения.Точные измерения ускорения свободного падения можно использовать для поиска залежей полезных ископаемых, например, железных руд. Геофизика – комплекс наук, исследующих физическими методами строение Земли. Геофизика в широком смысле изучает физику твердой Земли (земную кору, мантию, жидкое внешнее и твердое внутреннее ядро), физику океанов, поверхностных вод суши (озер, рек, льдов) и подземных вод, а также физику атмосферы (метеорологию, климатологию, аэрономию).

При выполнении данной работы измеряется ускорения свободного падения с помощью математического маятника. Математический маятник может быть осуществлен в виде тяжелого груза, достаточно малых размеров, подвешенный на нити. Колебания – движения, обладающие той или иной степенью повторяемости.

Наблюдения над периодом качаний некоторого эталонного маятника позволяют изучить распределение ускорения свободного падения по широте. Метод этот настолько точен, что с его помощью можно обнаружить и более тонкие различия в значении g на земной поверхности. Оказывается, что даже на одной параллели значение g в разных точках земной поверхности различно. Эти аномалии в распределении ускорения свободного падения связаны с неравномерной плотностью земной коры. Они используются для изучения распределения плотности, в частности для обнаружения залегания в толще земной коры каких-либо полезных ископаемых. Обширные гравиметрические измерения, позволившие судить о залегании плотных масс, были выполнены в СССР в области так называемой Курской магнитной аномалии под руководством советского физика Петра Петровича Лазарева. В соединении с данными об аномалии земного магнитного поля эти гравиметрические данные позволили установить распределение залегания железных масс, обуславливающих Курскую магнитную и гравитационную аномалии.

Целью данной работы является определение аномалии силы тяжести (ускорения свободного падения) в данной местности (г. Казань, Советский район).

1. Методы геофизической разведки

Геофизическая разведка – исследование земных недр физическими методами. Геофизическая разведка проводится прежде всего при поисках нефти и газа, рудных полезных ископаемых и подземных вод. Она отличается от геологической разведки тем, что вся информация о поисковых объектах извлекается в результате интерпретации инструментальных измерений, а не путем непосредственных наблюдений. Геофизические методы основаны на изучении физических свойств пород. Они используются либо для выявления месторождений полезных ископаемых, либо для картографирования таких геологических структур, как соляные купола и антиклинали (где аккумулируется нефть), а также для картографирования рельефа дна океана, структуры океанической и континентальной земной коры, определения генезиса и мощности рыхлых отложений и коренных пород, толщины ледниковых покровов и плавающих в океанах льдов, при археологических исследованиях и т.п. Геофизические методы делятся на две категории. К первой относятся методы измерения естественных земных полей – гравитационного, магнитного и электрического, ко второй – искусственно создаваемых полей. Гравиметрические методы дают наилучшие результаты, когда физические свойства исследуемых и картографируемых пород существенно отличаются от свойств граничащих с ними пород. Гравиметрические исследования всех типов включают сбор первичного материала в полевых условия, обработку и геологическую интерпретацию полученных данных. На всех этапах применяются компьютеры. Зарождение геофизических методов разведки связано с началом использования магнитных компасов для поиска железных руд и электрических измерений для выявления сульфидных руд. Применение геофизических методов расширилось в 1920-х годах, когда гравиметрические методы и сейсмические методы исследования доказали свою эффективность в обнаружении соляных куполов и связанных с ними нефтяных залежей на побережье Мексиканского залива в США и Мексике.

1.1. Гравиразведка

Гравиразведкой или гравиметрией называется геофизический метод, изучающий изменение ускорения свободного падения в связи с изменением плотности геологических тел. Гравиразведка активно применяется при региональном исследовании земной коры и верхней мантии, выявлении глубинных тектонических нарушений, поиске полезных ископаемых – преимущественно рудных, выделении алмазоносных трубок взрыва. Высокоточные гравиметрические измерения используются для определения рельефа местности, так как с увеличением превышений растет мощность осадочных пород над уровнем моря. Гравиразведка позволяет определять литологии магматических пород, поскольку с ростом величины ускорения свободного падения возрастает и концентрация плотных железистых соединений.

Для проведения гравиразведки применяют гравиметры, чувствительные приборы, измеряющие ускорение свободного падения. Единицей измерения этой величины является Гал или более употребительный мГал. Крупные геологические тела характеризуются аномалиями в десятки и даже сотни мГал. В отечественной практике наиболее широко применяются кварцевые гравиметры ГНУ-КС и ГНУ-КВ.

1.2. Гравиметрия

Гравиметрия – наука о силе тяжести во всех ее проявлениях. Первоначально гравиметрия занималась только измерением напряженности силового гравитационного поля Земли, которая численно равна ускорению свободно падающего тела. Но постепенно границы науки расширялись, и сейчас к гравиметрии относят не только изучение самой силы тяжести и ее количественное измерение, но и различные проявления ее в истории и развитии Земли.

Под действием силы тяжести сложилась фигура Земли. Вследствие всемирного тяготения, закон которого сформулировал И. Ньютон, все тела притягиваются обратно пропорционально квадрату расстояния. Если бы на вещество Солнца, Земли, Луны, планет и других небесных тел не действовали никакие силы, кроме внутренних сил тяготения, все эти тела имели бы строго сферическую форму. Но поскольку небесные тела вращаются, на вещество действует также центробежная сила. Под ее воздействием происходит перетекание вещества от полюсов к экватору, причем это продолжается до тех пор, пока не уравновесятся боковые, тангенциальные составляющие сил и жидкость на поверхности не окажется в равновесии. Так, любое небесное тело, в том числе и наша Земля, оказывается несколько сплюснутым. Поверхность равновесия такого тела всюду перпендикулярна направлению силы тяжести и называется уровенной поверхностью. Если бы Земля была однородна, то уровенная поверхность имела бы форму эллипсоида вращения. Реальная же Земля неоднородна, что вызывает отклонения уровенной поверхности от формы правильного эллипсоида. Уровенная поверхность реальной Земли, совпадающая с уровнем воды в океане, получила название геоид. Геоид может отклоняться от общего земного эллипсоида до ± 100 м.