Смекни!
smekni.com

Методические указания по курсовому проектированию по дисциплине (стр. 2 из 7)

· характеристику степени изученности природных условий территории по материалам ранее выполненных инженерных изысканий и других архивных данных, а также оценку возможности использования этих материалов и данных;

· краткую характеристику природных и техногенных условий района, влияющих на организацию и производство инженерных изысканий;

· обоснование при необходимости расширения границ территории проведения инженерных изысканий, с учетом сферы взаимодействия проектируемых объектов с природной средой, категорий сложности природных и техногенных условий, а также необходимой детальности изыскательских работ, состава, объемов, методов и технологии выполнения инженерных изысканий;

· обоснование применения современных нестандартизированных технологий (методов) производства инженерных изысканий для строительства в различных природных и техногенных условиях;

· обоснование установления характеристик и параметров отдельных компонентов природной среды и происходящих в ней процессов на территории и в пределах зоны предполагаемого воздействия (по объектам, отнесенным к экологически опасным видам хозяйственной деятельности, а при необходимости и по другим объектам).

Перечень экологически опасных объектов и видов хозяйственной деятельности, при подготовке обосновывающей документации на строительство которых оценка воздействия на окружающую среду проводится в обязательном порядке, принимается в соответствии с Конвенцией об оценке воздействия на окружающую среду в трансграничном контексте.

· мероприятия по обеспечению безопасных условий труда (в соответствии с требованиями СНиП III-4-80), охраны здоровья, по санитарно-гигиеническому и энергоинформационному благополучию работающих с учетом природных и техногенных условий и характера выполняемых работ;

· мероприятия по охране окружающей среды и исключению ее загрязнения и предотвращению ущерба при выполнении инженерных изысканий;

· требования к организации и производству изыскательских работ (состав, объем, методы, технология, последовательность, место и время производства отдельных видов работ), контроль за качеством работ;

· перечень и состав отчетных материалов, сроки их представления;

· обоснование необходимости выполнения научно-исследовательских работ при инженерных изысканиях для проектирования крупных и уникальных объектов или в сложных природных и техногенных условиях; сведения по метрологическому обеспечению. К программе инженерных изысканий для строительства должна прилагаться копия технического задания и другая документация, необходимая для производства изыскательских работ.

В курсовой работе должны быть запроектированы все выше перечисленные пункты.

3. Определение объема инженерно-геологических изысканий

3.1. Определение количества скважин

Количество скважин зависит от размеров в плане проектируемого объекта, категории сложности инженерно-геологических условий и уровня ответственности здания. В табл. 1 приведены максимально возможные расстояния между скважинами (шурфами) в зависимости от выше перечисленных факторов.

Таблица 1

Минимальное расстояние разведочными выработками

Категория сложности инженерно-геологических условий

Расстояние между горными выработками для зданий и сооружений I и II уровней ответственности, м

I

II

I

75-50

100-75

II

40-30

50-40

III

25-20

30-25

Большие значения расстояний следует применять для зданий и сооружений малочувствительных к неравномерным осадкам, меньшие – для чувствительных к неравномерным осадкам. К зданиям малочувствительным к неравномерным осадкам относятся здания с жестким монолитным каркасом.

Для определения количества скважин необходимо нарисовать в масштабе 1:500 план проектируемого здания. На этом плане, исходя из максимально возможных расстояний, графически располагаются скважины (см. рис. 1). Расположение скважин производится произвольно с таким расчетом, чтобы они охватили все части здания и некоторую территорию, прилегающую к зданию. При необходимости проведения изысканий под инженерные коммуникации скважины располагают по оси этих коммуникаций.

Рис. 1. Схема для определения количества скважин

3.2. Определение глубины бурения

Определение глубины разведочных скважин (шурфов) производится исходя из величин давления на подошве фундаментов проектируемого здания. При этом из множества вариантов выбирается фундамент с наибольшей нагрузкой. В табл. 2 приведены глубины скважин, начиная с котлована под фундаменты. То есть проектная глубина состоит из суммы глубина котлована плюс расстояние, определенное по табл. 2.

Таблица 2

Значения величин для определения глубины скважин

Здание на ленточных фундаментах

Здание на отдельных опорах

Нагрузка на фундамент, кН/м (этажность)

Глубина горной выработки от подошвы фундамента, м

Нагрузка на опору, кН

Глубина горной выработки от подошвы фундамента, м

До 100 (1)

4-6

До 500

4-6

200 (2-3)

6-8

5-7

500 (4-6)

9-12

2500

7-9

700 (7-10)

12-15

5000

9-13

1000 (11-16)

15-20

10000

11-15

2000 (более 16)

20-23

15000

12-19

50000

18-26

Меньшие значения глубин принимаются при отсутствии подземных вод в пределах сжимаемой толщи грунтов оснований, а большие – при их наличии. Глубина котлована назначается по глубине заложения фундамента, которая зависит от глубины промерзания, наличия подвалов и приямков, уровня подземных вод.

Для определения глубины скважин в масштабе строится схема (см. рис. 2).

Рис. 2. Схема для определения глубины скважин для безподвального здания

При использовании свайных фундаментов глубина скважин должны быть на 5 м больше длины свай (см. рис. 3).

Рис. 3. Схема определения глубины бурения здания при использовании свай

3.3. Определение количества образцов

Определение объема работ по лабораторным исследованиям свойств грунтов производится исходя из количества слоев и глубины бурения. В каждом слое через 2 м отбираются монолиты (из глинистых грунтов) и образцы нарушенной структуры (из песчаных грунтов). Отбор образцов из каждого слоя может производиться не из всех скважин, но из каждого слоя. Количество образцов должно быть достаточным для определения основных физических характеристик (плотность, плотность твердых частиц, влажность, влажности на границах пластичности, гранулометрический состав); основных механических характеристик (модуль общей деформации, удельное сцепление, угол внутреннего трения) и коэффициента фильтрации.

Рис. 4. Геологический разрез для определения количества образцов

Определение количества образцов производится по геологическому разрезу, составленному по результатам изысканий, проведенных ранее на ближайшем к месту изысканий объекте. Количество образцов может быть уточнено во время изысканий на проектируемом объекте.

В программе изысканий должны быть предусмотрены опытные полевые работы: статическое и динамическое зондирование, прессиометрические испытания, испытания штампами и эталонными сваями. Выбор метода зависит от характеристик проектируемого здания и категории сложности инженерно-геологических условий. В курсовой работе необходимо обосновать применение опытных полевых работ и вкратце описать технологию проведения.

ЗАКЛЮЧЕНИЕ

В заключении студент перечисляет методы, применяемые для инженерно-геологических изысканий, и обосновывает объем проектируемых работ

Список литературы

1. Бондарик Г.К., Ярг Л.А. Инженерно-геологические изыскания. – М.: Университет, 2007.

2. СНиП 11-02-96 Инженерные изыскания для строительства. – М., ГОССТРОЙ России, 1997.

3. СП 11-105-97 Инженерно-геологические изыскания. Ч. 1. Общие правила производства работ. М., ГОССТРОЙ России, 1997.

4. СП 50-101-2004 Проектирование и устройство оснований и фундаментов зданий и сооружений. – М. ГОССТРОЙ России, 2005.

ПРИЛОЖЕНИЯ

Приложение 1

ТЕХНИЧЕСКОЕ ЗАДАНИЕ

на производство инженерно-строительных изысканий ____________________