Смекни!
smekni.com

Методические указания по определению устойчивости энергосистем часть II (стр. 4 из 41)

6.1.25. Для узлов с преобладающей асинхронной нагрузкой и не содержащих источников реактивной мощности значение критического напряжения может быть упрощенно определено на основании эксперимента по косвенным признакам, без опасности возникновения лавины напряжения. Для этого требуется получить статическую характеристику Qн = f2 (U) при понижении напряжения до той точки, где значение Qн минимально (обозначим это напряжение UминQ). Опыт прекращается, как только значение Qн при понижении напряжения начинает возрастать.

Для указанной нагрузки критическое напряжение определяется по формуле

, (6.17)

где хвн - эквивалентное сопротивление распределительной сети (от выводов асинхронных двигателей до точки, напряжение в которой не зависит от режима рассматриваемой нагрузки1).

Значение хвн берется в относительных единицах, в которых Uбаз = Uдв.ном;

.

6.1.26. Устойчивость нагрузки при пуске крупного двигателя. Пуск крупного синхронного или асинхронного двигателя может вызвать существенное понижение напряжения на шинах нагрузки и даже вызвать нарушение статической устойчивости работавших двигателей. Расчет устойчивости нагрузки может быть выполнен указанными выше способами; удобно применение критерия dDQ / dU < 0. Запускаемый двигатель учитывается в виде дополнительной нагрузки, имеющей сопротивление

для асинхронных двигателей или
для синхронных2.

_______________

1 Для решения обратной задачи - определения хвн по известным значениям QминQ и Uкр - выражение (6.17) непригодно, так как не обеспечивает удовлетворительной точности.

2 См. также п.6.2.

6.1.27. Влияние статических конденсаторов на устойчивость нагрузки. При исследовании влияния на статическую устойчивость нагрузки статических конденсаторов, параллельно включаемых в узлах нагрузки, они учитываются изменением реактивной мощности потребителей Q = Qн - U2 / xc. Расчет устойчивости в этом случае проводится так же, как и без статических конденсаторов.

Кроме того расчет устойчивости можно упрощенно провести по схеме, приведенной на рис. 6.1, б, в которую должны быть введены следующие эквивалентные параметры

,
. (6.18)

При рассмотрении влияния конденсаторных батарей (КБ) на устойчивость нагрузки в общем случае следует учитывать, что при увеличении генерируемой ими мощности может потребоваться (из-за повышения напряжения) изменение коэффициентов трансформации понизительных трансформаторов.

Нужно различать три случая:

а) КБ на понизительной подстанции устанавливаются для того, чтобы повысить напряжение до номинального; коэффициенты трансформации остаются неизменными. В этом случае запас по статической устойчивости двигателей увеличится;

б) КБ устанавливаются не для повышения напряжения, а для увеличения коэффициента мощности нагрузки; напряжение в точке установки КБ (шины НН понизительной подстанции) восстанавливается понижением ЭДС ближайших генераторов или компенсаторов. В этом случае запас по статической устойчивости нагрузки снижается;

в) КБ устанавливаются также для повышения коэффициента мощности, но напряжение на шинах НН подстанции восстанавливается изменением коэффициента трансформации понизительных трансформаторов этой подстанции. В этом случае (в зависимости от значения внешнего сопротивления) запас по статической устойчивости двигателей может как повыситься, так и понизиться.

В последнем случае [Л.6] запас по устойчивости двигателей повышается, если сопротивление х2 от шин ВН подстанции до той точки энергосистемы, напряжение в которой не зависит от режима нагрузки (рис. 6.2), больше, чем сопротивление трансформатора хт; если хт > х2, запас по устойчивости двигателей после включения КБ снижается. (Оба сопротивления, разумеется, должны быть приведены к одной ступени напряжения).

В проектной практике расчеты устойчивости с учетом КБ имеют особое значение тогда, когда от решения вопроса о коэффициентах мощности нагрузки зависит выбор мощности трансформаторов, числа цепей и т.п. Неучет влияния КБ в этом случае может привести к тому, что будут получены существенно заниженные значения критического напряжения и, следовательно, в реальных условиях повысится вероятность возникновения лавины напряжения.

6.2. Динамическая устойчивость нагрузки

6.2.1. При анализе динамической устойчивости нагрузки в общем случае следует рассматривать следующие возмущения:

- пуск крупного двигателя;

- автоматическое повторное включение или переключение источников питания (АПВ и АВР), вызванные КЗ в местной электросети;

- КЗ и АПВ в сети высокого напряжения.

Рис. 6.2. Упрощенная схема питания подстанции с конденсаторной батареей

В расчетах учитывается, что за время перерывов питания или понижений напряжения, вызванных КЗ или другими причинами, двигатели тормозятся. Поэтому при восстановлении напряжения двигателя потребляют ток, существенно больший нормального. Это ведет к понижению напряжения в электрической системе и в свою очередь вызывает уменьшение момента вращения двигателей, как тех, которые испытали перерыв питания, так и других, работавших до этого в нормальных условиях. Если не провести соответствующего расчета и не оценить возможного понижения напряжения на выводах двигателей, то может получиться, что после рассматриваемого возмущения электродвигатели не смогут работать: их частота вращения не восстановится, устойчивость нагрузки нарушится. Самозапуск двигателей должен быть осуществлен за время, допустимое по характеру технологического процесса и по нагреву двигателей. Во время самозапуска двигателей в остальной энергосистеме не должно быть таких снижений напряжения, которые могли бы привести к нарушению нормальной работы.

6.2.2. Мощные нагрузки, вызывающие резкие толчки (электрическая тяга, двигатели прокатных станов и др.) требуют при расчетах режимов определения:

- условий, при которых работа этих толчкообразных нагрузок не приводит к недопустимым колебаниям напряжения на остальных нагрузках, например не приводит к нарушению устойчивости других двигателей;

- устойчивости самих двигателей, работавших с переменным моментом.

6.2.3. Помимо указанного, для узлов нагрузки, подключенных к энергосистеме в электрической близости от центра качаний, при возможности возникновения асинхронного режима, следует проверять устойчивость асинхронных и, главным образом, синхронных двигателей при периодических возмущениях, вызванных асинхронным режимом.

6.2.4. Если для конкретного узла нагрузки известны характеристики по напряжению и частоте, то доля двигательной нагрузки в суммарной нагрузке узла определяется, в первом приближении, по формуле

. (6.19)

При расчетах режима нагрузки для неномидальных значений частоты и напряжения можно в качестве первого приближения полагать регулирующие эффекты по напряжению не зависящими от частоты.

6.2.5. Расчеты пуска и самозапуска асинхронных двигателей. Целью расчетов пуска двигателей является:

- определение времени пуска и допустимости нагрева двигателя при пуске;

- проверка, при необходимости, плавности пуска (например для подъемных кранов), постоянства ускорения и других параметров пуска, существенных для технологического процесса;

- оценка влияния понижения напряжения на выводах других потребителей при пуске достаточно мощных двигателей.

В настоящих Методических указаниях рассматривается только последний вопрос, который наиболее существен в маломощных энергосистемах, а также при питании предприятия по линиям электропередачи с недостаточно высокой пропускной способностью, при недостаточной мощности трансформаторов и пр. Наиболее опасным в этом смысле является прямой пуск короткозамкнутых асинхронных двигателей, обычно составляющих основную часть нагрузки. Большой пусковой ток этих двигателей может вызвать снижение напряжения, что приведет к увеличению скольжения остальных работающих двигателей и росту реактивной мощности, потребляемой двигателями. Последнее может привести к опрокидыванию работающих двигателей и к возникновению лавины напряжения.

6.2.6. Задача определения условий самозапуска группы асинхронных двигателей требует в общем случае расчета скольжения для следующих этапов:

- короткое замыкание;

- перерыв питания (бестоковая пауза при АПВ или АВР). Напряжение равно нулю от t = tкз t=tкз + tпер;

- послеаварийный режим; напряжение восстанавливается до уровня, который зависит от токов нагрузки, процессов в генераторах и изменений схемы сети.

Задача расчета пусков двигателей (индивидуальных - в нормальных условиях и групповых - в некоторые случаях при ликвидации отказов) является аналогичной с той лишь разницей, что отдельные этапы расчета могут быть исключены.

6.2.7. Расчеты самозапусков и групповых пусков двигателей обычно преследуют цель определения максимального количества двигателей, для которых возможно восстановление нормального режима за допустимое время. Двигатели, самозапуск которых невозможен, должны своевременно отключаться защитой.