Смекни!
smekni.com

Разработка программы монитор для загрузки программы пользователя технико-экономическое обоснование проекта (стр. 4 из 5)

Д) химически активные вещества отсутствуют.

Согласно ГОСТ 12.1.013-78.ССБТ данное помещение можно классифицировать как помещение без особой опасности. Для предотвращения поражения электрическим током потребителей электроэнергии в лаборатории необходимо предусмотреть следующие технические мероприятия: все токопроводящие части машин должны быть защищены ограждающими кожухами, все металлические конструкции, которые могут оказаться под напряжением в результате короткого замыкания, должны быть заземлены и защищены. Кроме технических, должны проводиться также организационные мероприятия: к работе с электроустановками должны допускаться только лица, прошедшие инструктаж и проверку знаний правил техники безопасности в соответствии с ГОСТ 12.0.004-79, ПТЭ и ПТБ, периодически должен осуществляться контроль сопротивления электрической изоляции токоведущих частей (в соответствии с требованиями ПУЭ, оно не должно быть ниже 0,5 МОм по отношению к корпусу ЭВМ).

7.1.4 Взрывоопасность и пожароопасность

Помещение лаборатории является помещением, содержащим твердые и волокнистые горючие вещества, не выделяющие горючую пыль или волокна, переходящие во взвешенное состояние. Следовательно, это помещение может быть отнесено к классу П-IIа согласно ПУЭ. По отношению к возможности образования взрывоопасных смесей, горючих пылей или волокон с переходом их во взвешенное состояние данное помещение может быть классифицировано как взрывобезопасное, так как условия для образования таких взрывоопасных продуктов отсутствуют. Пожар в помещении может возникнуть при взаимодействии горючих веществ, окислителя (условия пожара) и источников воспламенения (причина пожара). Горючие вещества в лаборатории: деревянные столы, двери, полы, бумага для печати, изоляция соединительных кабелей, жидкости для протирки узлов ЭВМ и др.

К возможным источникам и причинам возникновения пожара можно отнести следующие: эксплуатация электронеисправного оборудования, применение электронагревательных приборов, короткое замыкание, неисправность проводки, нарушение правил пожарной безопасности. Для отвода тепла от ЭВМ работают вентиляторы, в лаборатории постоянно действует также система кондиционирования воздуха, поэтому кислород, как окислитель процессов горения, имеется в достаточном количестве. Исходя из этого, помещение лаборатории, согласно нормам СНиП-II-90-81, по степени пожароопасности следует отнести к категории Д (помещения, в которых в обращении находятся негорючие вещества и материалы в холодном состоянии).

В качестве профилактических могут быть применены следующие мероприятия:

А) организационные - правильная эксплуатация машин, противопожарный инструктаж, обеспечение возможности безопасной эвакуации людей и т.д.;

Б) технические - соблюдение противопожарных правил при проектировании, при устройстве электропроводов и оборудования; деревянные предметы, пол следует пропитывать огнезащитным составом; стеллажи, шкафы должны быть из несгораемых материалов; система электропитания ЭВМ должна иметь блокировку, обеспечивающую отключение в случае пробоя изоляции на корпус; для обогрева помещения использовать только водяное отопление;

вырезано

Г) Рентгеновское излучение монитора. Источником рентгеновского излучения монитора является работа самой электрон­но-лучевой трубки, в которой происходит бомбардировка атомов люминофора элек­тронами высоких энергий. При этом, как показывают расчеты, возможно появление лишь так называемого «мягкого» рентге­новского излучения с длиной волны 2-5 нм, при том, что общий КПД такой «рентгенов­ской установки « в целом не превышает тысячных долей процента мощности, рассе­иваемой на всей ЭЛТ. Само по себе стекло толщиной 0,4-0,6 см (толщина экрана со­временных кинескопов) практически пол­ностью поглощает все имеющееся при рабо­те монитора излучение. При проведении измерений индуцируется лишь слабый внеш­ний фон.

На основании выше изложенных данных можно сделать ряд выводов, касающихся способов борьбы с вредными факторами, сопровождающими работу современных мониторов. Во-первых, наиболее существен­ными представляются лишь три из рассмот­ренных четырех факторов: статические поля, радиочастотное излучение, блики от посто­ронних источников света. Рентгеновское излучение в большинстве моделей монито­ров настолько мало, что им можно пренеб­речь. Во-вторых, для устранения или умень­шения каждого отдельного фактора целесо­образно применять в защитном компьютер­ном экране свой, отдельно взятый тонкопленочный слой вещества, обладающий опреде­ленной структурой, свойствами и т. д. При этом слои последовательно наносятся на прозрачную основу-подложку, в качестве которой может служить обычное оконное или органическое стекло. Основной техно­логической задачей является улучшение оп­тических характеристик наносимых слоев и наилучшее согласование их между собой и с подложкой. В-третьих, защитный компью­терный экран в целом должен обладать как можно большей прозрачностью в видимом диапазоне света и не искажать передачу красок и цветов. Это накладывает опреде­ленные ограничения на толщину и число слоев защитного экрана.

7.4 Выводы

Данный раздел был посвящен охране труда и окружающей среды. Произведен анализ условий труда студентов в лаборатории, даны рекомендации для их улучшения. Можно утверждать, что действия вредных факторов находятся в допустимых пределах, установленных нормативно-технической документацией по охране труда. Произведен расчет защитного заземления.

8 Гражданская оборона

8.1 Выявление и оценка радиационной обстановки в лаборатории СевГТУ при загрязнении радиоактивными веществами после аварии на АЭС

8.1.1 Вводная часть

Современный этап развития экономики характеризуется неуклонным ростом ядерной энергетики. К концу 1988 г. в мире действовало более 420 ядерных реакторов, а к 2000 году число ядерных реакторов увеличится до 600. Эксплуатация объектов с ядерными компонентами сопровождается авариями, утечкой радиоактивных веществ, что наносит значительный политический, экологический, экономический и психический ущерб. За последнее время в мире было зарегистрировано более 150 крупных аварий на объектах ядерной энергетики. Из них авария на Чернобыльской атомной электростанции — одна из наиболее крупных в истории развития атомной энергетики, а её последствия приобрели значительные, во многом непредсказуемые масштабы.

В настоящее время на территории Украины находится в эксплуатации 5 атомных станций (15 реакторов), что составляет 40% энергии, производимой на АЭС страны.

Развитие отечественной ядерной энергетики ведется на основе строительства реакторов на тепловых нейтронах, позволяющих использовать в качестве топлива слабо обогащенный и природный уран. К таким реакторам относятся водо-водные энергетические реакторы, в которых вода является одновременно и теплоносителем и замедлителем (ВВЭР-600, ВВЭР-1000).

Наиболее широкое распространение сейчас получили канальные энергетические реакторы с графитовым замедлителем и водой в качестве теплоносителя (РБМК-1000, РБМК-1500).

вырезано

Согласно таблица 2.10 [4] Дзоны = 17.1 рад.

С учётом нахождения объекта на внешней границе зоны Б определи дозу области (Добл) по формуле:

Добл = Дзоны*Косл-1*Кзоны-1 = 17.1*0.5*0.59 = 5.04 рад (7.1)

7. Расчёты показывают, что Добл > Дуст, по формуле 7.1. произведем расчёт с Дуст:

Дуст = Дзоны*Косл-1*Кзоны-1

и выведем Дзоны с установленным Дуст:

Дуст

Дзоны = -------------- = 13.6 рад

Косл-1*Кзоны-1

Итак, если персонал начнет работу спустя два часа после аварии, то ему можно работать (по данным таблица 2.10 [4]) Траб = 9 часов. Следующая смена может работать уже всю смену Траб = 12 часов.

8.1.3 Мероприятия по защите

Мероприятия по защите рабочих и служащих объекта ОНХ:

1. Установить непрерывное радиационное наблюдение.

2. При прохождении радиоактивного облака укрыть рабочих и служащих в противорадиационных убежищах (ПРУ).

3. До спада уровня радиации до 5 р/час личный состав должен находиться в только респираторах.

4. Во избежание переоблучения рабочие и служащие после шести часов от времени аварии укрыть в убежищах (ПРУ).

5. Для исключения заноса радиоактивных веществ вовнутрь здания провести герметизацию помещений и установить фильтрационные агрегаты.

6. Для снижения загрязнения РВ территории, зданий провести дезактивизационные работы.


ЗАКЛЮЧЕНИЕ

Данный дипломный проект является заключительной работой выполняемой студентами обучаемыми по специальности «Компьютерные и интеллектуальные системы и сети».

В данной работе проведено проектирование учебного стенда для автоматизированного контроля параметров дискретных элементов. Постановка задачи на проектирование была произведена дипломным руководителем - старшим преподавателем Явкуном Юрием Леонидовичем.

Глава 1 «АНАЛИЗ ПОСТАНОВКИ ЗАДАЧИ». В данной главе была проанализирована задача на дипломный проект, то есть сформированы требования к учебному стенду для автоматизированного контроля параметров дискретных элементов и требования к выходным данным после проектирования стенда.

Глава 2 «РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ УСТРОЙСТВА». В данной главе, на основе поставленной задачи, была разработана структурная схема учебного стенда вцелом, она представлена на чертеже 1. Также в подпунктах данной главы были разработаны структурные схемы двух основных модулей процессорного и диагностического. При разработке структуры данного устройства учитывались пожелания заказчика, в лице дипломного руководителя, относительно некоторых решений применяемых в структуре стенда.

Глава 3 «РАЗРАБОТКА ОБОБЩЕННОГО АЛГОРИТМА ФУНКЦИОНИРОВАНИЯ УСТРОЙСТВА». В этой главе был описан алгоритм работы учебного стенда с момента включения питания до загрузки программы пользователя. Описание работы проведено, как со стороны ПЭВМ, так и со стороны стенда. Также в данной главе был описан процесс обмена информацией между процессорным и диагностическим модулем.