Смекни!
smekni.com

Методические указания к курсовому проектированию по дисциплине "проектирование автоматизированных систем управления непрерывными технологическими процессами" Часть I (стр. 4 из 10)

Наиболее полно методы синтеза СПС для различных классов объек­тов изложены в [14].

Метод динамической оптимизации с использованием уравнения Эй­лера, а также метод максимума Понтрягина изложены в [15, с. 227-315; 16, с. 393-426]. Указанные методы позволяют синтезировать системы оптимальные по точности, быстродействию, различным интегральным критериям качества переходных процессов.

В [I7] приводятся алгоритмы в примеры расчета оптимальных в экстремальных систем управления.

Область применения указанных методов определяется структурой математической модели объекта управления и требованиями к характеру

управляющих воздействий. Так, метод уравнения Эйлера целесообразно применять для таких задач оптимального управления, где по физичес­кому смыслу трудно ожидать решения в виде разрывных функций и где оптимизируемый функционал и уравнения связи (ограничения) существен­но нелинейные. Принцип максимума Понтрягина целесообразно применять при формировании кусочно-непрерывных управлявших воздействий и при ограничениях на управления в виде неравенств.

Оптимизацию стационарных режимов непрерывных технологических процессов (статическую оптимизацию) производят, используя в качест­ве критерия эффективности управления различные технико-экономические показатели функционирования объекта управления - его производи­тельность, себестоимость производимой продукции, энергетические за­траты, степень превращения вещества в результате химической реакции, а также показатели качества продукции, некоторые комплексные показа­тели, характеризующие ход технологического процесса.

Статическая оптимизация заключается в определении нового, наи­лучшего с точки зрения выбранного критерия эффективности технологи­ческого режима, если необходимость в этом вызывается изменением внешних условий (возмущающих воздействий, качества сырья и т.д.). Такая оптимизация предполагает, что процесс находится в установив­шемся состоянии и может быть мгновенно переведен в новое, при этом динамика переходного процесса в новое установившееся состояние не существенна.

В зависимости от полноты знаний об объекте управления стати­ческая оптимизация может выполняться с помощью:

-ЭВМ, использующих математические модели объектов и эконо­мико-математические методы решения задач оптимизации (когда знания об управляемом процессе достаточно полны и задача оптимизации чисто математическая);

-автоматических оптимизаторов (когда создание математической модели статики процесса затруднено либо достаточно просто экспери­ментально определить экстремум регулируемого показателя);

-комбинированных методов, сочетающих методы математического и экспериментального определения оптимума.

Математические методы решения задач статической оптимизации непрерывных технологических процессов можно разделить на две группы: методы безусловной и условной оптимизации.

Методы безусловной оптимизации используются, когда математичес­кая модель представляет собой целевую функцию, условия поддержания экстремума которой требуется определить. Такие задачи решаются ме­тодами математического анализа (методами нахождения экстремума функ­ции одной либо нескольких переменных).

Если математическая модель технологического процесса представ­ляет собой совокупностъ целевой функции и системы ограничений, оп­тимизация такого процесса может быть решена одним из известных из курса "Математические методы исследования операций" методов математического программиро­вания (линейного, нелинейного, динамического и т.д.). Выбор того или иного метода математического программирования определяется ха­рактером управляемого технологического процесса и его математичес­кой модели (стадийность процесса, характер нелинейности математи­ческой модели и т.д.).

Метода поиска оптимума регулируемого параметра с помощью авто­матических оптимизаторов (экстремальных регуляторов) изложены в ряде учебников курса “Теория автоматического управления”. В частности в [15] рассмотрены методы поиска экстремума функции одной переменной с помощью экстремального шаго­вого регулятора, экстремальных регуляторов с запоминанием экстремума, с непрерывной модуляцией, с синхронным детектором и др.

Комбинированные методы требуют менее точного математического описания процесса, чем методы строгой математической оптимизации, однако эффективность(например, быстрота) поиска оптимума резко воз­растает: грубый выход в район оптимума осуществляется по упрощенной модели, а оптимум уточняется в процессе экспериментов на объекте.

С комбинированными методами оптимизации тесно связаны методы определения и поддержания экстремума двух и более переменных, пос­кольку поисковые шаги при отыскании экстремума формируются с помощью соответствующих программ ЭВМ, а рабочие шаги осуществляются экстремальным регулятором. Из этих методов наиболее распространены методы: покоординатной оптимизации (Гаусса - Зайделя), градиента крутого восхождения (Бокса - Уилсона), случайного поиска и др. [15].

Особеностъю систем экстремального регулирования, реализующих указанные методы, является то, что в процессе регулирования постоян­но уточняются условия экстремума оптимизируемого критерия и выраба­тываются управляющие воздействия для оптимального ведения техноло­гического процесса.

Программой комплексного курсового проекта предусмотрена раз­работка алгоритмов и программ статической и динамической оптимизации технологического процесса, основанных либо на экспериментальных данных по исследованию процесса, выдаваемых руководителем курсового проекта, либо на использовании неформальных математических моделей, разработанных в результате анализа физико-химических закономернос­тей технологического процесса.

5. РАЗРАБОТКА ФУНКЦИОНАЛЬНОЙ СХЕМЫ АСУНТП

При проектировании АСУНТП все основные технические решения по автоматизации установок, агрегатов или отдельных узлов технологического процесса отображаются на функциональных схемах автоматиза­ции.

Функциональная схема автоматизации является основным техническим документом, определяющим структуру и функциональные связи между технологическим процессом и средствами контроля и автоматизации (в том числе сред­ствами телемеханики и вычислительной техники). Ее выполняют в виде чертежа, на котором схематически условными изображениями показывают технологическое оборудование, коммуникации, органы управления, при­боры и средства автоматизации.

В процессе разработки функциональных схем на основании анали­за условий работы технологического оборудования и агрегатов, выяв­ленных законов и критериев управления объектом, а также таких требо­ваний, предъявляемых к качеству работы систем автоматизации, как точность поддержания технологических параметров, качество регулиро­вания и надежность, необходимо решить следующие задачи:

-получение первичной информации о ходе технологического процес­са и состоянии технологического оборудования;

-непосредственное воздействие на технологический процесс для оптимального управления им;

-стабилизация отдельных технологических параметров процесса;

-контроль и регистрация технологических параметров процесса и состояния оборудования.

Функциональные задачи автоматизации, как правило, реализуют­ся с помощью технических средств, включавших в себя: отборные уст­ройства, датчики, средства преобразования и переработки информации, отображения и выдачи информации обслуживающему персоналу. Результатом составления функциональных схем автоматизации являются:

-выбор методов измерения технологических параметров;

-выбор основных технических средств контроля и автоматизация (в том числе вычислительной техники);

-определение приводов исполнительных механизмов, регулирующих и запорных органов;

-размещение средств контроля и автоматизации на щитах, пультах, технологическом оборудовании и трубопроводах;

-определение способов и технических средств для представления информации о состоянии технологического оборудования.

При разработке функциональной схемы АСУНТП нужно руководство­ваться следующими основными принципами.

1. При разработке функциональных схем автоматизации и выборе технических средств должны учитываться вид и характер технологического процесса, условия пожаро- и взрывоопасности, агрессивность и токсичность рабочей и окружающей сред, требуемая точность и быстро­действие средств автоматизации.

2. АСУНТП должна строиться, как правило, на базе серийно вы­пускаемых средств автоматизации и вычислительной техники. При этом необходимо стремиться к применению однотипных средств автоматизации и вычислительной техники.

3. В качестве локальных средств сбора данных (датчиков), вто­ричных приборов, регулирующих органов, средств централизованного сбора, передачи и обработки информации на ЭВМ следует использовать преимущественно приборы и средства автоматизации Государственной системы промышленных приборов (ГСП). Перечень и характеристики при­боров этой системы приведены в [20; 44] .

4. Классы точности выбираемой аппаратуры определяются требо­ваниями автоматизируемого технологического процесса. Чем выше класс точности измерительной аппаратуры, тем сложнее конструкция приборов и выше их стоимость.

5. При разработке функциональной схемы автоматизации техноло­гического процесса, агрегата или участка должны быть решены вопросы с взаимной связи этих систем с АСУ предприятием. Технические сред­ства АСУНТП должны выбираться с учетом возможности их использования для обмена информацией с техническими средствами АСУП.

6. Применение вычислительной техники позволяет существенно со­кратить размеры щитов для отображения информации о ходе технологи­ческого процесса, повысить надежность и эффективность АСУНТП. Выбор системы централизованного управления с применением управляющей ЭВМ либо распределенной системы управления с применением микропроцессо­рных контроллеров и микро ЭВМ производится исходя из экономической целесообразнос­ти того или иного варианта технического решения.