Смекни!
smekni.com

Методические указания по техническому обслуживанию микропроцессорных арв и систем управления силовых преобразователей (стр. 20 из 25)

Схема синхронизации импульсов выполнена по принципу фазовой автоподстройки частоты и фазы опорного генератора к частоте и фазе напряжения питания ТП. Основное назначение фазовой автоподстройки — обеспечить совпадение по фазе начала периода опорного генератора и напряжения питания ТП при любой схеме соединения ТСН СВ и при любом изменении частоты. Опорный генератор выполнен на таймере и счетчике микроконтроллера. Таймер формирует импульсы с периодом 0,25° опорной частоты, поступающие на счетчик, который отсчитывает текущую фазу y напряжения Uab опорного генератора. Тактовая частота таймера 20 MHz. Изменение кода загрузки таймера T 0,25° приводит к изменению частоты опорного генератора. Значения фазы y опорного генератора и фазы напряжения синхронизации, подаваемого от ТСН через датчик напряжения синхронизации Usyn (LEM-U), фильтры, выпрямители, АЦП и т.д., сравниваются между собой на измерительном органе. В качестве измерительного органа используется фазовый детектор. В расчетной формуле [3] для определения фазы Usyn используются линейные напряжения ab и bc после АЦП и среднее значение напряжения синхронизации Usyn. Синус разности между фазами напряжения опорного генератора и напряжения синхронизации с выхода фазового детектора подается на ПИ регулятор, который, воздействуя на генератор опорной частоты, обеспечивает устранение этой разности.

Для обеспечения совпадения фаз напряжения питания ТП и опорного генератора, т.е. для компенсации фазового сдвига за счет группы соединения ТСН и сдвига в фильтре датчика напряжения Usyn применяется коррекция Corr PsiF. Настройка Corr PsiF выбирается при номинальной частоте напряжения синхронизации.

При введении частотной коррекции принято, что дрейф фаз, вносимый фильтром, пропорционален отклонению частоты Fsyn от номинальной. Коэффициент пропорциональности задается настройкой dPsi/df.

А.3.6 Системный стабилизатор PSS состоит из каналов Df, f', If', U' (см. раздел 1.1 настоящих Методических указаний).

Основными каналами для стабилизации внешнего движения являются каналы по отклонению и производной частоты Df, f'. В качестве дополнительных стабилизирующих каналов используется производная тока ротора If' (стабилизация внутреннего движения) и производная напряжения статора U' (улучшение динамических характеристик канала напряжения, преобразование ПИ-канала напряжения в ПИД-канал). Дополнительные каналы позволяют также лучше использовать основные каналы PSS в различных схемно-режимных ситуациях. При работе генератора на XX и при Р < PMin PSS отключается, выполняется ПИ регулирование напряжения. Структурные схемы каналов изображены на рисунках 1 и 3.1 настоящих Методических указаний.

На каналы Df, f' сигнал отклонения частоты V121 Delta Fg подается от датчика частоты (см. рисунки 3.1, 3.4).

Сигнал DfV423 Change F формируется с помощью фильтра, имеющего передаточную функцию pТа0F/1 + pТа0F с, где Та0F = 2 с (параметр Т421). Фильтр позволяет исключить постоянную составляющую в сигнале отклонения частоты от номинальной Delta Fg. Наличие большой постоянной времени 2 с обеспечивает передачу при переходных процессах входного сигнала без фазовых сдвигов. При частоте, превышающей 0,2-0,3 Гц, указанная передаточная функция близка к единице.

Требуемый коэффициент усиления (см. таблицу настоящих Методических указаний) обеспечивается умножением на безразмерный параметр Т420 K0F в расчетном блоке MUL (вызов на экран, изменение с экрана). На выходе канала Df имеется фильтр FТр низкой частоты первого порядка с постоянной времени ТаY0F (T422 - вывод на экран, изменение с экрана), равной 5-20 мс. Передаточная функция фильтра W(p) = 1/(1 + рТ).

Сигнал производной частоты f' формируется расчетным блоком Derive (дифференциатор).

Поскольку в дифференциальном звене Xвыхода = к dXвхода/dt или W(р) = k р = Т р (р = d/dt), т.е. выходное значение пропорционально скорости изменения входной, коэффициент усиления этого блока измеряется в секундах (В выхода: В входа/с; k = Т). Этот коэффициент изменяется с помощью параметра Т431 T1F блока Derive и для получения требуемого коэффициента канала f' умножается на безразмерный параметр T430K1F в блоке MUL. На выходе канала f' для обеспечения нормальной его работы применен фильтр низкой частоты первого порядка с постоянной времени ТаY1F (T432 — вывод на экран, изменение с экрана).

При совместном действии каналов Df, f' обеспечивается форсировка при увеличении угла d и расфорсировка в момент начала уменьшения угла, что демпфирует электромеханические колебания. В принципе Df º d' и при мгновенном действии этого канала можно было бы осуществить указанное демпфирование одним этим каналом. Однако ввиду наличия запаздывания в контуре регулирования возбуждения для его компенсации дополнительно вводится опережающее воздействие f' º d², эквивалентное ускорению угла d. Суммарное действие этих каналов эквивалентно действию безынерционного канала Df.

Действие каналов Df, f' блокируется для предотвращения повышения напряжения (режим сброса нагрузки): при увеличении отклонения частоты генератора от номинальной до уровня Delta FBlk (> 53-54 Гц); при повышении напряжения генератора до значения UMaxFBlk (> 1,25 UNom); при одновременном увеличении напряжения генератора до значения U@F'Max (> 1,1´UNom) и повышения, производной частоты до уровня F@UMax (> 1 - 1,5 Гц/с). Кроме того, каналы Df, f' блокируются при команде оператора "Отключить PSS", при работе генератора на XX и при Р < 0,1 ´ PNom, а также на 0,04 — 0,06 с после отключения КЗ.

Структура канала производной тока ротора If', получающего питание от датчика тока ротора — V080 If, аналогична структуре канала f'. Данные по кодам настройки и выбранным параметрам приведены на рисунках 1 и 3.1 — 3.4 настоящих Методических указаний.

То же самое можно сказать и про канал U', получающий питание от датчика напряжения генератора V100Ug (см. рисунки 1 и 3.1). В регуляторах АРВ-М применяется и второй, альтернативный способ введения дифференциальной составляющей ПИД закона регулирования напряжения. При этом вместо изображенного на рисунках 1 и 3.1 канала U' после расчетного блока SUB с выходом V413 Uctrl (перед расчетным блоком SUB, на который подается уставка Т400 Set) включается интегрально-дифференцирующее звено с передаточной функцией 1 + pT1Ucnl / 1 + pT2Ucnl. Составляющая по производной напряжения формируется этим звеном при Т1/Т2 > 1. В установившемся режиме и при ручном изменении уставки (р = jw » 0) коэффициент передачи звена равен 1. При выполнении указанного на рисунке 3.1 способа введения U' T1Ucnl = T2Ucnl (основной способ ввода U¢).

А.3.7 Канал ограничения по току ротора обеспечивает снижение тока ротора до номинального значения с выдержкой времени, зависящей от кратности этого тока, в соответствии с тепловой характеристикой ротора. Зависимость допустимого времени перегрузки от кратности тока ротора задается при настройке регулятора кусочно-линейной функцией, приведенной на рисунке 4. На рисунке 4 приведены коды точек характеристики — коды тока и времени, позволяющие выполнять настройку при вызове этих' параметров на экран.

При значении тока ротора If < Lim If1 (код тока — Т301, обычно 1,05—1,1 IfNom; код времени — Т302@) время перегрузки не ограничено. При If > = Lim If1 (см. соответствующий расчетный блок на рисунке 3.1) включается программный переключатель, подается переменная 1/t Limf на используемый для измерения перегрева интегратор ITG, начинается отсчет времени перегрузки, перегрев ротора начинает увеличиваться. При выборе настроек необходимо обеспечить возрастание значений настроек по току ротора (Lim If1 < Lim If2 < Lim If3 < Lim If4 < 1,5). Значению Heatf = 1 на выходе ITG соответствует максимально допустимый перегрев, при Heatf = 0 перегрев отсутствует. Значение t Limf вычисляется по формуле линейной интерполяции тепловой характеристики ротора. При достижении максимального допустимого перегрева Heatf = 1 перегрузка запрещается — путем включения программного переключателя в работу вводится канал ограничения перегрузки, выводится канал напряжения. Ограничитель перегрузки поддерживает ток ротора равным номинальному. Коэффициент усиления канала ограничения определяется значением DIf (блок SUB), умноженным на значение KpLimIf (Т600) в блоке MUL. Воздействие канала ограничения на ОКР обеспечивает астатическое поддержание тока ротора в режиме ограничения.

При возникновении КЗ в процессе ограничения на 2 с блокируется действие ограничителя, чем обеспечивается форсировка возбуждения и повышение предела динамической устойчивости.