Смекни!
smekni.com

Владимир Петров История развития алгоритма решения изобретательских задач – ариз информационные материалы Тель-Авив, 200 6 Петров В. История развития алгоритма решения изобретательских задач – ариз (стр. 31 из 70)

Правило 7. Пригодны только те решения, которые совпадают с ИКР или практически близки к нему.

Примечания

25. При бесконечном многообразии изобретательских задач число физических противоречий, на которых "держатся" эти задачи, сравнительно невелико. Поэтому значительная часть задач решается по аналогии с другими задачами, содержащими подобное физпротиворечие. Внешне задачи могут быть весьма различными, аналогия выявляется только после анализа – на уровне физпротиворечия.

4.3. Рассмотреть возможность устранения физпротиворечия с помощью "Указателя применения физических эффектов и явлений".

Примечания

26. Разделы "Указателя применения физических эффектов и явлений" публикуются в журнале «Техника и наука» (1981 г., №№ 1-9; 1982 г., №№ 3-5 и 8).

4.4. Если задача решена, перейти от физического решения к техническому: сформулировать способ и дать принципиальную схему устройства, осуществляющего этот способ. Если ответа нет, проверить – не является ли формулировка 2.1 сочетанием нескольких разных задач. В этом случае 2.1 следует изменить, выделив отдельные задачи для поочередного решения (обычно достаточно решить одну главную задачу).

Если и после этого нет ответа, вернуться к 3.1, взять другой изменяемый элемент и повторить анализ. Если повторный анализ не дал ответа, вернуться к шагу 2.1 и заново сформулировать мини-задачу, отнеся её к надсистеме, в которую входит рассматриваемая система. При необходимости такое возвращение к мини-задаче совершают несколько раз – с переходом к наднадсистеме и т.д.

4.5. Рассмотреть вводимые вещества и поля. Можно ли не вводить новые вещества и поля, использовав те вещества и поля, которые уже есть в системе или в окружающей среде? Можно ли использовать саморегулируемые вещества? Ввести соответствующие поправки в технический ответ.

Примечания

27. Саморегулируемые (в условиях данной задачи) вещества – это такие вещества, которые определенным образом меняют свои физические параметры при изменении внешних условий, например, теряют магнитные свойства при нагревании выше точки Кюри. Применение саморегулируемых веществ позволяет менять состояние системы или проводить в ней измерения без дополнительных устройств.

Часть 5. Анализ способа устранения физического противоречия

5.1. Провести предварительную оценку полученного решения.

Контрольные вопросы:

1. Обеспечивает ли полученное решение выполнение главного требования ИКР («Элемент сам...»)?

2. Какое физическое противоречие устранено (и устранено ли) полученным решением?

3. Содержит ли полученная система хотя бы один хорошо управляемый элемент? Какой именно? Как осуществлять управление?

4. Годится ли решение, найденное для «одноцикловой» модели задачи, в реальных условиях со многими «циклами»?

Если полученное решение не удовлетворяет хотя бы одному из контрольных вопросов, вернуться к 2.1.

5.2. Проверить (по патентным данным) формальную новизну полученного решения.

5.3. Какие подзадачи могут возникнуть при технической разработке полученной идеи? Записать возможные подзадачи — изобретательские, конструкторские, расчетные, организационные.

Часть 6. Развитие полученного ответа

6.1. Определить, как должна быть изменена надсистема, в которую входит измененная система.

6.2. Проверить, может ли измененная система (или надсистема) применяться по-новому.

6.3. Использовать полученный ответ при решении других технических задач.

а. Рассмотреть возможность использования идеи, обратной полученной.

б. Построить таблицу «расположение частей — агрегатные состояния изделия» или таблицу «использованные поля — агрегатные состояния изделия» и рассмотреть возможные перестройки ответа по позициям этих таблиц.

Часть 7. Анализ хода решения

7.1. Сравнить реальный ход решения с теоретическим (по АРИЗ). Если есть отклонения, записать.

7.2. Сравнить полученный ответ с табличными данными (таблица вепольных преобразований, таблица физических эффектов, таблица основных приемов). Если есть отклонения, записать.

Таблица 1

СХЕМЫ ТИПИЧНЫХ КОНФЛИКТОВ В МОДЕЛЯХ ЗАДАЧ

1. Вредное действие

А вредно действует (волнистая стрелка) на Б. Требуется устранить вредное действие, не усложняя А и не меняя Б.
2.
Противодействие
А действует на Б полезно (сплошная стрелка), но при этом постоянно или на отдельных этапах возникает обратное вредное действие (волнистая стрелка). Требуется устранить вредное действие, сохранив полезное действие.
3.
Сопряженное действие
Полезное действие А на Б в чем-то оказывается вредным действием на то же Б (например, на разных этапах работы одно и то же действие может быть то полезным, то вредным). Требуется устранить вредное действие, сохранив полезное.
4.
Сопряженное действие
Полезное действие А на одну часть Б оказывается вредным для другой части Б. Требуется устранить вредное действие на Б2, сохранив полезное действие на Б1.
5.
Сопряженное действие
Полезное действие А на Б является вредным действием на В (причем А, Б и В образуют систему). Требуется устранить вредное действие, сохранив полезное и не разрушив систему.
6.
Сопряженное действие
Полезное действие А на Б сопровождается вредным действием на само А (в частности, вызывая усложнение А). Требуется устранить вредное действие, сохранив полезное.
7.
Несовместимое действие
Полезное действие А на Б несовместимо с полезным действием В на Б (например обработка несовместима с измерением). Требуется обеспечить действие В на Б (пунктирная стрелка), не меняя действия А на Б.
8.
Неполное действие или бездействие
А оказывает на Б одно действие, а нужны два равных действия. Или А вообще не действует на Б. Иногда А вообще не дано: надо изменить Б, а каким способом – неизвестно. Требуется обеспечить действие на Б при минимально простом А.
9.
«Безмолвие»
Нет информации (волнистая пунктирная стрелка) об А, Б или взаимодействии А и Б. Иногда дано только Б. Требуется получить необходимую информацию.
10.
Нерегулируемое (в частности, избыточное) действие
А действует на Б нерегулируемо (например постоянно), а нужно регулируемое действие (например, переменное). Требуется сделать действие А на Б регулируемым (штрих-пунктирная стрелка).

Таблица 2

РАЗРЕШЕНИЕ ФИЗИЧЕСКИХ ПРОТИВОРЕЧИЙ

Принципы

Примеры
1. Разделение противоречивых свойств в пространстве. Для пылеподавления при горных работах капельки воды должны быть мелкими. Но мелкие капли образуют туман. По А.С. 256 708 мелкие капли окружены конусом из крупных капель.
2. Разделение противоречивых свойств во времени А.с. 258 490: ширину ленточного электрода меняют в зависимости от ширины сварного шва.

3. Разное взаимодействие частей системы с внешней средой.

По конвейеру движутся одинаковые объекты (плоские диски), отличающиеся только окраской. Для отделения белых объектов от черных объекты облучают инфракрасным светом. Черные диски нагреваются и прилипают к цилиндру, покрытому парафином
(А.С.. 597 415).

4. Системный переход 1: от системы к антисистеме или сочетанию системы с антисистемой.

А.с. 264 626: в ядовитые вещества заранее добавляют противоядие.
5. Системный переход 2: вся система наделяется свойством С, а ее части – свойством анти-С. Рабочие части тисков для зажима деталей сложной формы: по А.С.. 510 350: каждая часть (стальная втулка) твердая, а в целом зажим податливый, способен менять форму.

6. Системный переход 3: переход к системе, работающей на микроуровне.

А.с. 179 479: вместо механического крана "термо-кран" из двух материалов с разными коэффициентами теплового расширения. При нагреве образуется зазор.

Структурная схема АРИЗ-82

Где: С – ситуация, З – задача, УЗ – уточненная задача, ФП – физическое противоречие, Р – решение,
ОР – оценка решения, УР – усовершенствованное решение, ДР – дополнительные решения,
ОХР – оценка хода решения. Обратная связь обозначена пунктирной линией.

БЛОК-СХЕМА АРИЗ-82