Смекни!
smekni.com

Предложен сканирующий струйный нанолитограф и способы его работы, содержащий одно или более сопел для создания струи или струй из химически или физически активного вещества, (стр. 1 из 4)

Международная заявка на патент PCT/BY2006/000007

«Scanning jet nanolithograph, methods for operating thereof».

Сканирующий струйный нанолитограф и способы его работы

Реферат

Предложен сканирующий струйный нанолитограф и способы его работы, содержащий одно или более сопел для создания струи или струй из химически или физически активного вещества, формирующей рисунок на подложке или делающую профильную резку обрабатываемого материала, отличающейся тем, что сопло состоит из оптически прозрачного капилляра нанометровых размеров, в стенки которого через сужающийся световод вводится узкополосное оптическое излучение. С помощью электрической модуляции оптического излучения от одного или более источников создается неоднородное световое давление на струю, в результате чего производится пространственное сканирование струей по подложке размером 1-10 см2. При прерывании оптического излучения прерывается струя. Контроль за процессом нанесения топологического рисунка может осуществляться непосредственно в режиме реального времени технологического процесса при использовании широкоапертурной оптической системы для сбора оптического излучения, возникающего в зоне контакта струи с объектом с последующим преобразованием его в электрический сигнал для обработки в компьютере. Время нанесения однослойного рисунка с разрешением 7,25х14.5 нм на 1 см2 составит 1,5 мин.

Область техники. Изобретение относится к области технологического оборудования для электронной промышленности и может быть использовано в производстве интегральных схем с наноразмерными элементами, одновременно оно может совмещать операции контроля за процессом нанолитографии, осуществлять контурную резку материалов, создавая атомарно гладкие поверхности.

Уровень техники. Известно, что в настоящее время электронная промышленность для серийного производства планарных сверхбольших интегральных схем (СБИС), имеющих 107-108 активных элементов (транзисторов) на кристалл использует литографические установки с разрешением 65-100 нм. Такое разрешение получено при использовании эксимерных лазеров ArF с длиной волны излучении 193 нм, фазоконтрастных прозрачных шаблонов и специальных фоторезистов [1]. Волновой характер процессов и возможность параллельного переноса на полупроводниковую часть подложки всего или части рисунка интегральной схемы приводит к тому, что фотолитография будет применяться, пока не исчерпаны ее последние возможности. Дальнейшее уменьшение длины волны источника света связано с проблемой отсутствия в природе необходимых оптически прозрачных материалов для фотошаблонов. Это вынуждает заменять оптику, работающую на пропускание света на оптику, работающую на отражение – зеркальную оптику, и вместо источников электромагнитного излучения использовать электронные или ионные пучки.

В настоящее время для получения интегральных схем с разрешением менее 65 нм используются следующие 4 основные направления: экстремальный ультрафиолет (extreme UV lithography – EUVL), электронная проекционная литография (SCALPEL), рентгеновская литография (Х- ray lithography), ионная литография (ion beam lithography). Попытки усовершенствовать серийную литографию ближнего УФ диапазона 193 нм иммерсионным методом позволило придти к фундаментальному пределу для этой технологии – 45 нм (“ASML” TWINSCAN XT:1700i). Рентгеновская литография из-за высокой энергии фотонов более 100 эВ уменьшает разрешающую способность вследствие возникновения высокоэнергетичных вторичных электронов. Считается что для серийного производства с разрешением 6,5 -35 нм пока пригодна только EUVL. Однако, этот способ имеет очень высокий коэффициент энергетических потерь из-за низкого коэффициента преобразования электрической энергии в экстремальный ультрафиолет и большой коэффициент потерь в зеркальной оптике. Помимо низкого значения коэффициента конверсии нанолитограф содержит большое количество различных других источников существенных энергетических потерь (Табл. 1)

Таблица 1. Уровни электрических и оптических мощностей в различных узлах EUVL нанолитографа при производительности, соответствующей современному сканер-степперу ASML (TWINSCAN AT:1200 B) и чувствительности резиста 5mJ/cm2. [1].

Чувствительность фоторезиста,

mJ/cm2

S

Мощность необходимая для экспонирования,

100 подложек/h

(Æ300nm), W

P

Полная мощность излучения на поверхности маски, W

PM

Собранная мощность излучения от источника

EUV,W

Pa

Полная мощность излучения источника

EUV,W

P2p

Полная мощность излучения первичного источника** kW

P10

Полная электрическая мощность***

kW

P1

5

2.68*

2M

4M

6M

8M

9.8

23

55

130

77

183

4341027

310

734

1736

4110

15

37

87

205

150

370

870

2050

*Учтены потери времени между экспозициями 50%, все значения мощностей увеличиваются в 10 раз из-за потерь времени при сканировании,** коэффициент конверсии h=2%,, ***КПД лазера he=10%.

Параллельные проекционные варианты электронно- и ионолитографий с использованием широких пучков сталкиваются с практически не разрешимыми на производственном уровне проблемами эмиссионного или транспарентного шаблона. Такого рода шаблон содержит маленькую картинку (фрагмент) и дает возможность переносить ее единовременно. Но для этого он должен быть проницаемым для электронного (ионного) пучка. Разработаны очень сложные и дорогие машины и технологии (например SCALPEL, толщина транспарентного электроношаблона составляет всего 100 нм). С их помощью возможно сегодня проэкспонировать более или менее современную СБИС за приемлемое время. Последовательная электронная и ионная литографии с использованием тонкого сканирующего пучка из-за низкой производительности пригодна только для создания эталонных масок для EUVL.

Таким образом, без создания дешевого мощного источника УФ излучения в диапазоне 13.5 нм решение проблемы выпуска серийной EUVL с приемлемой производительностью невозможна. По прогнозам, в целом предприятие, использующее такой технологический цикл, может стоить десятки миллиардов долларов. Все это подталкивает к поиску принципиально новых путей создания методов нанолитографии.

Одним из таких путей является предложение фирмы HP использовать не фотометоды, (а imprint lithography) типографские методы нанопечати с помощью наноматриц [2]. Как фото методы, так и типографские методы являются параллельными методами хранения и переноса гига-терабитных объемов информации. В настоящее время им не было альтернативы до появления мощных компьютеров, которые могут хранить такие же объемы информации в виде топологии интегральной схемы. При этом проблема дефектов «электронной маски» и ее загрязнения в процессе технологических операций полностью исключается. При этом себестоимость изготовления самих «электронных масок» падает в миллион раз и соизмерима со стоимостью DVD матрицы. При этом компьютер играет роль виртуальных «абсолютно чистых комнат». Это также уменьшает стоимость технологического маршрута на стоимость создания «чистых комнат» высокого класса.

Известны следующие последовательные методы нанолитографии, пригодные для создания квантовразмерных электронных приборов с предельно достижимыми рабочими параметрами. В работе [3] было показано, что для получения низковольтных (0.2-0.3В) одноэлектронных транзисторов расстояния между проводниками не должны быть меньше 7,25 нм. Следовательно, создавать литографические установки с меньшим, чем 7,25 нм разрешением не имеет физического смысла.

Основным узлом последовательных нанотехнологических установок является нанореактор, в котором под воздействием энергии зонда происходят локальные физико-химические процессы в областях нанометровых размеров. Сам зонд последовательно (построчно) сканирует поверхность. Сканирование осуществляется либо магнитным полем в случае нанометровых электронных или ионных пучков либо механически по типу сканирующих микроскопов STM, AFM, либо по типу сканирующего оптического микроскопа ближнего поля (SNOM).

Использование электронных или ионных пучков для сканирования позволяет получить большое поле обзора вплоть до квадратных сантиметров. Теоретически разрешающая способность такого пучка будет определяться длиной волны де Бройля частицы. Например, для 150 эВ электрона должны получить разрешение 0.1 нм. Но на практике для сканирующей электронной микроскопии достигнуто разрешение всего 5-10 нм при энергии электронного пучка до 100 КэВ. Это связано с тем, что электронные и ионные пучки представляют собой «газообразные» струи с высокими кулоновскими силами отталкивания одноименных частиц, что не позволяет достичь высокой плотности пучка. Сложность фокусировки таких пучков приводит к невозможности создать высокий ток в пучке (низкая яркость), и, как следствие, получается низкая производительность. Кроме того, из-за накопления заряда для работы с ними требуется электропроводная подложка. Таким образом, из-за низкой производительности, более часа, сканирование с помощью электронных и ионных пучков в нанолитографии можно использовать только для изготовления эталонных масок. К тому же, высокая энергия фокусируемых электронов приводит к значительному разрушению используемых материалов, что ограничивает пространственную разрешающую способность метода. Преимуществом же является возможность непосредственного наблюдения (контроля) за процессом изготовления маски в разных энергетических диапазонах по вторичным электронам или фотонам.