Смекни!
smekni.com

А. В. Воронин (стр. 7 из 29)

Наконец, метод графов связей позволяет лучше понять особенности и взаимосвязи двух основных подходов к автоматизированному моделированию мехатронных систем – структурного и физического мультидоменного (другими словами, моделирование на уровне передачи сигналов и моделирование на уровне передачи энергии), что полезно для пользователя современных систем моделирования.

2.2. Основные определения графов связей

Метод графов связей (ГС) или связных графов [26] основан на представлении о том, что любые физические процессы состоят из элементарных актов преобразования энергии. Такими элементарными процессами являются накопление энергии, диссипация (потери) энергии и преобразование энергии без потерь. Таким образом, метод ГС демонстрирует известное единство природы и протекающих в ней физических процессов.

Граф связей представляет собой совокупность элементов, соответ­ствующих основным типам преобразования энергии и изображаемых в качестве вершин графа, соединенных связями (дугами графа).

Связь изображается в графе линией с полустрелкой, показывающей принимаемое при моделировании за положительное направление передачи энергии. Для каждой связи в графе определены шесть величин, три из которых являются интегральными.

Каждый элемент характеризуется уравнением или системой уравнений относительно переменных относящихся к его связям.

2.2.1. Переменные связей

Основными переменными связей являются усилие

и поток
. Эти величины являются функциями времени и называются переменными мощности связи. Остальные четыре переменные вычисляются через основные по формулам:

мощность

(2.1)

энергия

, (2.2)

перемещение

(2.3)

и момент

(2.4)

Величина

– полезная энергия, передаваемая через связь в направлении, определенном полустрелкой.

2.2.2. Интерпретация переменных связей

Некоторые интерпретации переменных связей в системах различной физической природы приведены в табл. 1. Нетрудно проверить, что произведение усилия на поток в каждом случае дает мощность.

Отметим, что принятые в табл. 1.1 способы интерпретации пере-менных не единственно возможные. Можно назвать ток в электрических системах усилием, а напряжение – потоком. Соответственно изменятся и интерпретации момента и перемещения. В этом проявляется дуальность графа.

Таблица 1.1

Интерпретация переменных графов связей

Системы

электри-ческие механические поступатель-ные механические вращательные гидравли-ческие
Усилие
Напряжение
Сила
Момент силы
Давление
Поток
Ток
Скорость
Угловая скорость
Расход
Момент
Потокосце–пление
Импульс силы
Кинетический момент
Импульс давления
Переме-щение
Заряд
Перемеще– ние
Угол пово– рота
Объем

2.2.3. Типовые элементы графа связей

Элементы графа связей делятся на 4 группы: источники энергии, аккумуляторы энергии, элементы потери энергии и преобразователи энергии без потерь.

В первую группу входят два идеальных источника энергии (рис. 2.1a,b): источник усилия, обозначаемый как

, и источник потока, имеющий обозначение
. Источник усилия задает значение

, (2.5)

а источник потока

. (2.6)

В электрических системах этим элементам соответствуют, очевидно, идеальные источники ЭДС и тока. Легко устанавливаются аналогии и в системах иной природы. В соответствии со смыслом источников энергия выходит из них, что и отражается направлением полустрелок на связях источников.

Рис. 2.1. Односвязные элементы: a – источник усилия, b – источник потока, c – инерционность, d – потери, e – емкость

Группа аккумуляторов тоже включает два элемента: инерционность

и емкость
(рис. 2.1c,d). Взаимосвязь между усилиями и потоками для аккумуляторов может быть задана уравнениями:

(2.7)

для инерционности и

(2.8)

для емкости.

Если рассматривать линейные модели, то уравнения аккумуляторов можно записать в виде:

, (2.9)

, (2.10)

где для обозначения параметров аккумуляторов

и
используются те же буквы, что и в обозначениях элементов.

Аккумуляторы различаются тем, что инерционность имеет свойство накапливать кинетическую энергию, а емкость – потенциальную.

В третью группу входит один элемент потерь

, для которого в общем случае

(2.11)

В простейшем случае уравнению (2.11) соответствует линейное уравнение

, (2.12)

где

– параметр элемента.

Четвертая группа включает 4 преобразователя энергии: трансфор­матор, гиратор, узел общего усилия и узел общего потока.

Трансформатор

(рис. 2.2) преобразует энергию в соответствии с формулами:

(2.13)

где

– коэффициент передачи трансформатора.

Рис. 2.2. Трансформатор: a – с постоянным коэффициентом,

b – модулированный

Нетрудно увидеть, что мощности в обеих связях трансформатора равны

.

Примерами трансформаторов являются редуктор, трансформатор переменного тока, рычаг. Трансформатор может иметь переменный коэффициент передачи, зависящий как от времени, так и от некоторой другой переменной. Такой трансформатор называется модулированным и обозначается как MTF.

Гиратор

можно получить из трансформатора, если в одной из его связей поменять местами усилие и поток. Уравнения гиратора имеют вид:

(2.14)