Смекни!
smekni.com

А. В. Воронин (стр. 28 из 29)

Кроме основных элементов библиотека блоков SimMechanics содержит блоки Ограничений, которые ограничивают движения тел относительно друг друга; блоки начальных условий, которые определяют начальное состояние механизма; блоки приводов, которые определяют силы или движения, прикладываемые к соединениям и телам и блоки Датчиков.

На рисунке 5.5 приведена блок-схема простейшей механической системы (маятника), включающая такие физические компоненты как блок тела (body), блок одномерного вращательного движения (revolute), блок основания (ground).

Рис. 5.5. Модель маятника в пакете SimMechanics

Энергетические связи между телами и кинематическими парами определяют кинематику механизма. Они могут быть векторными и скалярными. Например, на рис. 5.5b связи между основанием, вращательной кинематической парой и телом являются векторными, так как определяю передачу энергии во вращательном движении по трем осям системы координат.

Важнейшим достоинством пакета SimMechanics является возможность объединения блоков SimMechanics и блоков Simulink в единой схеме. В частности, блоки Привода SimMechanics (Actuator blocks) могут подключаться к стандартным выходным портам Simulink, как это показана на рис. 5.5b. Таким образом, есть возможность смоделировать в Simulink источник управляющего сигнала и осуществлять управление телом через блок Привода. Точно так же блоки Датчиков SimMechanics содержат выходные порты, через которые можно соединить модель SimMechanics с блоками Simulink.

Возможности настройки режимов моделирования обеспечивают следующие способы анализа, каждый из которых соответствует специфическо­му типу модели.

Прямой режим исследования динамики механизма. В данном режиме вычисляют положения и скорости тел системы на каждом времен­ном шаге, с учетом начальных условий по положениям и скоростям тел и действия любых сил, приложенных к системе.

Инверсный режим исследования динамики механизма. В данном режиме вычисляются силы, необходимые для того, чтобы получить заданную ско­рость для каждого тела разомкнутой системы.

Кинематический режим. Вычисляются силы, которые требуются для получения заданной скорости для каждого тела замкнутой системы.

Режим балансировки. Это режим - вариант прямого режима исследования динамики, основанный на использовании для исследования модели команды trim Simulink, которая позволя­ет находить установившиеся решения для исследуемой модели.

5.4.2. Пакет моделирования электрических систем SimPower

Пакет SimPowerSystems является, как и SimMechanics, расширением среды MATLAB. Он работает под управлением Simulink, используя тот же способ визуального компонентного программирования с использованием «энергетических» компонентов.

SimPowerSystems является современным инструментом проектирования, позволяющим ученым и инженерам быстро и легко строить и исследовать модели энергетических систем. Используемый графический ввод информации дает возможность задать топологию электрической цепи. Анализ может включать взаимодействие электрической цепи с механическими, тепловыми, управляющими и другими элементами. Это возможно потому, что все электрические части модели взаимодействуют с обширной Simulink библиотекой моделирования.

Библиотеки SimPowerSystems содержат модели типового энергетического оборудования типа источников энергии, трансформаторов, линий передачи энергии и силовой электроники. Все модели хорошо проработаны и их достоверность весьма высока.

С точки зрения моделирования мехатронных систем следует особенно выделить библиотеку, включающие модели различных электрических машин – постоянного тока, синхронных, асинхронных. Возможность объединения в единой схеме блоков SimPowerSystems и блоков Simulink открывает возможности исследования как самих машин, так и сложных систем электропривода.

В качестве примера на рисунке 5.6. представлена схема набора модели для получения переходной функции простой электрической цепи в пакете SimPowerSystems. Часть рисунка, обведенная пунктиром, относится к энергетической части схемы, и включает элементы, передающие мощность. Эти элементы входят в библиотеки SimPowerSystems. Модель ступенчатого входного воздействия (Step) и модель индикатора (Scope) взяты из библиотек Simulink. В результате, источник постоянного напряжения управляется входным сигналом. Выходное напряжение также преобразуется в сигнал и подается на индикатор. Блоки управляемого источника и измерителя выполняют роль интерфейсов между информационной и энергетической частями модели.

Рис. 5.6. Схема моделирования электрической цепи в пакете SimPowerSystems.

5.4.3. Пакет моделирования гибридных систем StateFlow

В разделе 3.3. отмечалось, что особенность исследования динамики гибридных систем состоит в том, что фазовое простран­ство этих систем разбивается на области с различным по­ведением, при этом фазовая траектория в зависимости от происходящих событий переходит из одной области фазового пространства в другой. Еще не­давно единственным способом изучения гиб­ридных систем было исследование их отдель­ных фаз или режимов и «склеивание» общего поведения вручную. В настоящее время появились пакеты, позволяющие моде­лировать глобальное поведение таких объектов [7,18]. Одним из эффективных и наиболее доступных инструментов численного моделирования систем, управляемых событиями, является пакет Stateflow, входящий в состав среды MathLab.

Stateflow используется вместе с пакетом Simulink и позволяет моделировать сложные событийно-управляемые системы, основываясь на теории конечного автомата. При этом MATLAB обеспечивает доступ к данным, программированию высокого уровня и инструментальным средствам визуализации; Simulink поддерживает моделирование непрерывных и дискретных динамических систем в среде графических блок-схем; диаграммы Stateflow расширяют возможности Simulink по моделированию сложных, управляемыми событиями систем.

Традиционной формой представления конечного автомата является таблица истинности, описывающая логику поведения системы [Карпов]. Однако с точки зрения визуального моделирования более удобным подходом к проектированию управляемых событиями систем является его описание в терминах переходов между состояниями. На этом подходе основано построение графических представлений – диаграмм переходов.

Диаграмма Stateflow (SF-диаграмма) в нотации обозначений конечного автомата, предложенной Дэвидом Харелом [7,19] – графическое представление конечного автомата, где состояния и переходы формируют базовые конструктивные блоки системы. Графический интерфейс пакета Stateflow позволяет создавать SF-диаграммы динамического типа. Это означает, что в ходе моделирования на SF-диаграмме отражаются все изменения модели: например, показывается, какие переходы реализуются и по каким условиям, изменяются цвета блоков в зависимости от их активности и т. п. Это дает возможность визуально отслеживать поведение системы в ходе моделирования, существенно повышая степень наглядности. Комбинация MATLAB-Simulink-Stateflow является мощным универсальным инструментом моделирования систем, управляемых событиями.

Обычно, при моделировании мехатронных систем, SF-диаграмма встроена в Simulink-модель и работает совместно с ней, обмениваясь сигналами (данные, события) через интерфейс. На рис. 5.7. показана схема, в которой источник переменного напряжения подключен к нагрузке – осциллографу через управляемый коммутатор. Переключатель должен работать следующим образом. При положительном напряжении на выходе генератора, он должен подключать это напряжение на вход индикатора. Если напряжение становится меньше нуля, на индикатор должен передаваться сигнал, равный 2.

Управление осуществляется SF-диаграммой в функции состояния сигнала источника. На вход диаграммы поступает сигнал от генератора

. Выходом диаграммы является сигнал управления переключателем
. С точки зрения нотаций StateFlow сигналы
и
являются данными. При этом
– входные данные,
– выходные. SF-диаграмма включает два состояния: On – включено и Off – выключено. По умолчанию диаграмма переходит в состояние On, переменной
присваивается значение 1 и переключатель подключает источник к индикатору. При выполнении условия
переменной
присваивается 0 и переключатель подает на вход индикатора сигнал уровня 2.

Рис. 5.7. Система управления коммутатором: a – блок-схема модели, bSF-диаграмма


Список литературы

1. Арайс Е.А., Дмитриев В.М. Автоматизация моделирования многосвязных механических систем. – М.: Машиностроение, 1987. – 240 с.

2. Бусленко Н.П. Моделирование сложных систем. – М.: Главная редакция физико-математической литературы, 1978.

3. Введение в математическое моделирование: Учебное пособие / В. Н. Ашихмин и др. Под ред. П.В.Трусова. – М.: "Интермет Инжиниринг", 2000. – 336с.