Смекни!
smekni.com

по дисциплине " Технологические процессы микроэлектроники " на тему: Технологические процессы герметизации имс (стр. 10 из 22)

1) соединение в твердой фазе в результате рекристаллизации соединяемых материа­лов и прорастания зерен через поверхность раздела;

2) соединение ниже температуры рекристаллизации за счет электронного взаимо­действия и атомного сцепления;

3) соединение в жидкой фазе в результате расплавления.

Воспроизводимость качества соединения существенно зависит от повторяемости величины электрического сопротивления в месте контакта. Поэтому сварочные уста­новки предусматривают автоматическое регулирование усилия давления (0,3 -1 кГ) ин­струмента по заданному контактному сопротивлению. Условием получения качествен­ного соединения является также деформация проводника не менее 40%.

Рис. 9. Схема ультразвуковой сварки с косвенным импульсным нагревом

Ультразвуковая сварка является разновидностью сварки давлением (холод­ной или с косвенным нагревом).

Ультразвуковые колебания возбуждаются в магнитострикционном преобразо­вателе и с помощью волновода (концентратора), служащего для увели­чения амплитуды, и сварочного инструмента передаются свариваемым деталям. Энер­гия колебаний преобразуется в сложные напряжения растяжения, сжатия и среза. При превышении предела упругости материала в зоне контакта возникают пластические деформации, и плёнка окисла разрушается, обнажая чистую поверхность. При этом ма­териалы схватываются за счет электронного взаимодействия.

Косвенный нагрев инструмента облегчает пластические деформации и улучшает качество соединения. Вначале осуществляется сдавливание соединяемых деталей, да­лее пропускается импульс тока через инструмент, а затем (или одновременно) создают­ся ультразвуковые колебания.

К преимуществам ультразвуковой сварки можно отнести: невысокую температу­ру в зоне контакта, возможность соединения трудносвариваемых разнородных мате­риалов (и даже диэлектриков) и невысокие требования к состоянию поверхности.

Ограничением метода является требование высокой пластичности материала проводника, так как деформация должна достигать 50 - 60%. Удельные давления долж­ны составлять несколько килограммов на 1 мм2.

Основными параметрами процесса являются амплитуда колебаний (порядка 5 -10 мкм при частоте 40 - 60 кГц) и удельное давление. Время сварки должно быть опти­мальным: при малом времени физический контакт соединяемых поверхностей может оказаться малым, при большом времени наблюдается разрушение узлов схватывания.

Таблица 2. Свариваемость материалов при различных методах микросварки

Материал контактной площадки и подложки Методы сварки и материалы проволочных выводов
Термокомпрессия нагретым инструментом Сварка косвен­ным импульс­ным нагревом Контактная сварка сдвоен­ным электродом Ультра­звуковая сварка
Аu А1 Сu Аu А1 Сu Аu А1 Сu Аu А1 Сu
Золотая плёнка с под­слоем нихрома на си-талле или стекле ++ + ++ ++ + ++ ++ ++ ++ +
Медная или никелевая плёнка с подслоем ни­хрома на ситалле . ++ + ++ ++ + ++ + ++ + +
Алюминиевая плёнка на ситалле или стекле ++ + + + + + ++ +

Примечание. ++ свариваются хорошо; + - свариваются удовлетворительно; - не сва­риваются.

В установке ЭМ-404 для ультразвуковой сварки использован инструмент капил­лярного типа, который может совершать продольные или крутильные колебания в за­висимости от установленного сменного волновода. Давление инструмента на сваривае­мые элементы регулируется в пределах 20-150 г, время сварки выдерживается с точно­стью ± 0,02 с. Ультразвуковой генератор может работать с частотой 58-65 кГц и с вы­ходной мощностью 0,1 - 28 Вт. На установке можно приваривать золотые, алюминие­вые и медные проволоки диаметром 20 -100 мкм. Установка имеет нагревательную ко­лонку, что позволяет работать с подогревом изделия.

В табл.2 приводятся данные по выбору метода соединения проволочных про­водников с тонкопленочными контактными площадками.

Роликовой сваркой можно сваривать корпуса большого размера и любой конфигурации. Одним из вариантов корпуса является сварка плоских корпусов двумя роликами, которые прокатываются по одной поверхности на небольшом расстоянии друг от друга. В этом случае сварка ведется по принципу односторонней контактной сварки с параллельным расположением электродов (роликов).

Электроннолучевая сварка для герметизации стала применять недавно и не нашла еще широкого распространения. Однако этот способ будет, безусловно, широко применяться благодаря ряду преимуществ перед другими способами герметизации.

Обычно при электроннолучевой сварке малых толщин зазор должен быть минимальным, так, при сварке деталей толщиной 0,3 мм зазор должен быть не менее 0,02 мм. Для уменьшения допусков на размеры зазора и воздействия сварки на металлостеклянные спаи необходимо разрабатывать специальную конструкцию корпусов и подготовку кромок. Наиболее рациональная форма кромок корпуса под сварку приведена на рис.9.1. При такой форме соединение происходит за счет взаимного расплавления металла крышки и основания. Глубина проплавления может достигать 0,5 мм, что обеспечивает герметичность изделия.

Рис 9.1. Форма кромок металлостеклянного корпуса под электроннолучевую сварку

Пайка.

Герметизацию пайкой применяют в стеклянных (микросхемы серии К106 и др.) и керамических (микросхемы серии ТСМ) корпусах с плоскими планарными выводами (рис. 1.1, г, д). В первом случае стеклянное основание получают в форме (прессование стеклянного порошка с последующим оплавлением) одновременно с сис­темой выводов и коваровой рамкой. Во втором случае вначале изготавливают керами­ческое основание с пазами под выводы, а затем выполняют пайку стеклом коваровых выводов и рамки. В обоих случаях для облегчения изготовления основания корпуса плоские выводы объединены в общую систему с помощью технологической рамки. Впоследствии после выполнения внутреннего монтажа (перед электриче­ским контролем) технологическая рамка отрезается штампом, разобщая выводы микро­схемы.

Золотое покрытие на коваровой рамке позволяет получать надежное паяное со­единение с крышкой корпуса (никель, никелированная медь и др.). С этой целью на коваровую рамку укладывают рамку из припоя ПОС-61 толщиной 0,15 - 0,2 мм, устанав­ливают крышку, и корпус с микросхемой помещают на нагреватель, снабженный вибра­тором (50 Гц). Наличие бортика по контуру рамки исключает проникновение припоя внутрь корпуса.

Для пайки корпусов применяют автоматические и полуавтоматические установ­ки. На установке АГМП-1 (автомат герметизации микросхем пайкой) пайку выполняют в среде инертного газа. Корпуса устанавливают в кассеты, обеспечивающие регулируе­мое усилие прижима на крышку корпуса в пределах 3 -10 г. Кассеты, содержащие по 10 корпусов каждая, помещают в магазин (емкость магазина 20 кассет). Расплавление рамки припоя осуществляется импульсным нагревом в диапазоне регулируемых темпе­ратур (150 - 450) ± 3° С. Во избежание термоудара изделие подвергают предваритель­ному нагреву в пределах (100 - 200) ± 10° С. Время пайки (регулируемое) 5 -15 с с дис­кретностью 1 с.

Вибрация может быть наложена со смещением по времени от начала пайки на 2 -12с. Расход инертного газа давлением 1,5-2 ат. составляет 0,5 м3/ч. Производитель­ность установки 450 корпусов в час.

Пайка припоями выполняется при температурах 170—350 °С. Перед пайкой изделие облуживают расплавленным припоем или помещают его между соединяемыми деталями в виде прокладок, таблеток, колец и др. Далее корпуса гермети­зируют, применяя различные способы нагрева, необходимые для оплавления припоя.

При кондуктивном методе нагрева детали корпуса ИМС с прокладкой припоя между ними, предварительно обработанной раствором или расплавом флюса (канифоли), зажимают с не­большим усилием между двумя нагревательными плитами. Недостаток этого метода — значительный нагрев основания корпуса, на котором расположена ИМС, а также необходимость применения флюса, остатки которого трудно полностью удалить, и они могут попасть внутрь корпуса.

При обдуве струей горячего газа (азота или аргона) корпу­са со стороны крышки применение флюса исключается, так как пайка проводится в инертной атмосфере.

Конвективный нагрев применяют при крупносерийном и массовом производстве. Собранные детали корпусов сжимают и фиксируют на все время пайки, которую провопят в конвейерных печах с защитной средой. Скорость движения конвейера температурный режим печи (подъем температуры до заданной, выдержка и охлаждение) обеспечивают оптимальный цикл пайки.

Этот метод пайки достаточно прост и доступен, однако из-за высокой теплопроводности припоя необходимо нагревать весь корпус. Кроме того, прочность паяного шва обычно ниже проч­ности соединяемых материалов (меди, никеля и особенно ковара).

Пайку стеклом применяют не только для контакта кристаллов с корпусами и крепления внешних выводов к ке­рамическим основаниям, но и для соединения керамических крышек с основаниями. Это значительно упрощает конструкцию корпусов и сборку ИМС. При такой пайке в качестве припоев используют низкотемпературные стекла.

Пайку перемычек к контактным площадкам можно осуществлять с дозировани­ем припоя в процессе пайки или с предварительным лужением контактных площадок. Последний способ является более прогрессивным, так как предполагается нанесение припоя высокопроизводительным методом погружения. Такой способ используют, на­пример, в тонкопленочных гибридных схемах серии К217 (медные луженые контакты), а также в толстопленочных гибридных схемах серий К202, К204 (серебряные луженые контакты) и некоторых других.