Смекни!
smekni.com

на тему (стр. 1 из 2)

Реферат на тему:

ЭЛЕКТРОЛИТИЧЕСКИЙ СПОСОБ ПРОИЗВОДСТВА ЕДКОГО НАТРА И ХЛОРА


В хлорной промышленности для производства едкого натра (едкого кали) и хлора электролизом водных растворов NaCl (КС1) по суммарной реакции

применяют три способа: диафрагменный электролиз (с твердым катодом), ртутный (катодом является ртуть) и мембранный способ, в котором вместо диафрагмы применяется катионо- или анионообменная мембрана.

Сырьем для электролитического производства щелочи и хлора являются водные растворы NaCl (КС1). О методе добычи рассола, о его очистке от солей Са и Mg и о физико-химических основах консолидированного осветления рассола подробно рассказано в главе 4 I части. Однако следует отметить, что известковое молоко, используемое на содовых заводах, на хлорных заводах заменяют раствором каустической соды (католит), поэтому метод очистки носит название содово-каустического. Кроме того, для ртутного метода рассол должен быть дополнительно очищен от солей тяжелых металлов, являющихся ядом для ртути. Для мембранного метода требуется более глубокая очистка рассола, чем для диафрагменного, осуществляемая с помощью ионообменных смол.

Каждый из указанных способов электролитического получения щелочи и хлора отличается реакциями, протекающими на катодах. В диафрагменном способе на твердом катоде происходит разряд ионов водорода с образованием в электролите щелочи, содержащей остаточные количества NaCl. В анодное пространство подается горячий очищенный рассол и отводится образующийся хлоргаз. Движение рассола из анодного пространства в катодное происходит за счет разности уровней анолита и ка-толита.

Катодный процесс. При электролизе водного раствора хлорида натрия на твердом, например, железном катоде, выделяется водород и в католите образуется щелочь

(2)

Различные ионы разряжаются при различных значениях потенциала. Это свойство ионов и позволяет использовать электролиз для разделения смесей веществ. Минимальный потенциал электрода, необходимый для разряда данного иона при концентрации его в растворе, равной 1 экв/л, называют нормальным электродным потенциалом и обозначают через Е0. Для многих ионов значения EQ известны и приводятся в справочной литературе.

В практических условиях разряд ионов на электродах происходит при более высоком значении потенциала, чем теоретическое. Разность между значениями действительного и обратимого* электродного потенциала называется поляризацией, которая возрастает с увеличением плотности тока.

Лимитирующей стадией процесса электролиза может быть стадия разряда ионов — торможение процесса за счет электрохимической стадии (возникающее при протекании тока), что приводит к появлению перенапряжения — поляризации. На поляризацию в этом случае влияют изменения условий ведения электролиза. Так, например, для уменьшения поляризации выделения водорода, т. е. для снижения в конечном итоге расхода энергии на электролиз, железный катод покрывают никелем или кобальтом (катализатором), снижающим потенциал выделения водорода (стандартный потенциал выделения водорода равен —0,828 В).

Разряд ионов натрия на стальном катоде не происходит вследствие высокого отрицательного значения стандартного потенциала реакции

(3)

равного —2,714 В.

Анодный процесс. Кроме основного процесса, протекающего на аноде

(4)

в анодном пространстве электролизера протекает ряд побочных реакций, уменьшающих выход по току, например разряд гидроксил-ионов с выделением кислорода

(5)

Хлор, выделяющийся на аноде, частично растворяется в электролите, взаимодействуя с водой в соответствии с реакциями

(6)

(7)

Образование свободной хлорноватистой кислоты в концентрированных водных растворах NaCl практически не изменяет ионного состава раствора вблизи анода вследствие слабой диссоциации этой кислоты, а следовательно, не влияет и на процесс электролиза.

При увеличении количества ОН-ионов вследствие, например, механического перемешивания раствора, приводящего к попаданию ионов ОН- из катодного пространства в анодное, хлорноватистая кислота нейтрализуется с образованием хорошо диссоциированной соли — гипохлорита натрия:

(8)

В результате равновесие реакции (7) сдвигается вправо, способствуя растворению новых количеств хлора. В этих условиях электролиз может протекать не с выделением хлора, а с образованием гипохлорита

(9)

Вследствие этого на аноде начинает протекать совместный разряд ионов С1_ и СЮ- с переходом ионов С10~ в ионы С103-

Хлорат натрия может также образоваться при взаимодействии гипохлорита со свободной хлорноватистой кислотой:

(10)

На окисление ионов СЮ~ на аноде до С103_ расходуется значительная доля тока, следовательно, указанные процессы являются нежелательными. Таким образом, выход по току* продукта, обозначаемый обычно через А, будет зависеть от тщательности разделения катодных и анодных продуктов. Кроме того, выход по току зависит от концентрации едкого натра в католите

Выход по току продукта зависит и от растворимости хлора в анолите, а последняя связана с концентрацией NaCl: чем выше концентрация NaCl в анолите, тем ниже растворимость хлора. Так, при температуре электролиза 80 °С растворимость хлора в воде составляет 1,2 г/л, а в насыщенном водном растворе NaCl, содержащем 297 г/л NaCl, только 0,3 г/л.

Растворимость хлора в водных растворах NaCl снижается также с повышением температуры. При содержании NaCl в растворе 297 г/л и при температуре 20 °С растворимость хлора составляет 1,9, а при 80 °С—0,3 г/л. Этим и объясняется стремление направлять на электролиз практически насыщенный водный раствор NaCl и вести процесс при температуре порядка 80—95 °С. Выход хлора и щелочи по току в этих условиях составляет 92—96%.

На рис. 1, а показано принципиальное устройство ванны с твердым катодом и вертикальной фильтрующей диафрагмой.

Диафрагма 1 делит ванну на катодное и анодное пространство. Уровень рассола в катодном пространстве ниже, чем в анодном, что обеспечивает фильтрацию рассола через диафрагму. Газообразный хлор отводится из анодного пространства, водород — из катодного.

При электролизе хлорид натрия разлагается неполностью. Неразложившийся NaCl отделяют от каустической соды в процессе выпарки слабых щелоков.

К применяемым для электролиза диафрагмам предъявляется ряд требований, в числе которых способность фильтрации электролита с заданной скоростью, химическая стойкость в растворах каустической соды и анолита, малое электрическое сопротивление.

Рис. 1. Схемы электролизеров с твердым катодом и вертикальной фильтрующей диафрагмой (а), с ртутным катодом (б) и с ионообменной мембраной (в): / — диафрагма; 2 — ионообменная мембрана


Используемые в современных промышленных электролизерах плотности тока составляют порядка 1000 А/м2 с тенденцией к увеличению при неизменных затратах на единицу продукции.

К интенсификации процесса электролиза приводит также укрупнение электролизеров, что резко снижает капитальные затраты. Принятая мощность промышленных электролизеров составляет 25 кА.

В качестве анодов в современных мощных электролизерах в хлорной промышленности используются металлические аноды, изготовленные из титана с нанесением на их поверхность оксида рутения Ti—RuО2.

При получении NaOH и С12 в электролизере с ртутным катодом на катоде электролизера протекает разряд ионов натрия с образованием амальгамы натрия

Ртутный катод обладает высоким перенапряжением выделения водорода, а равновесный потенциал разряда ионов натрия на ртути значительно ниже нормального потенциала натрия в результате образования амальгамы. На амальгаме натрия перенапряжение водорода еще выше, чем на чистой ртути, поэтому выделение водорода на ртутном катоде в ваннах промышленного типа практически не наблюдается. Так, например, потенциал катода из амальгамы натрия, содержащей 0,25% (масс.) Na, в насыщенном растворе NaCl при 25 °С равен 1,81 В. Перенапряжение водорода в этих же условиях составляет 2,15 В. Поэтому содержание водорода в хлоргазе нормально работающей ванны находится в пределах 0,2—0,4% (масс.)

Кроме разряда ионов натрия, на амальгамном катоде происходит восстановление растворенного хлора, хлорноватистой кислоты и гипохлорита натрия, например

Эти реакции уменьшают выход по току, повышая расход электроэнергии.

Основной процесс, протекающий на аноде электролизера с ртутным катодом, аналогичен процессу, протекающему в электролизерах с диафрагмой

(15)