Смекни!
smekni.com

по физике ученика 10-1 класса (стр. 2 из 6)

Верхний мираж (мираж дальнего видения)

Этот вид миражей по своему происхождению не сложнее "озерных", но разнообразнее. Их принято называть "миражами дальнего видения".

Воздух нагревается от поверхности Земли, и с высотой его температура падает. Однако если над слоем прохладного воздуха оказывается более тёплый (принесённый, например, южными ветрами) и сильно разреженный воздушный слой, а переход между ними довольно резок, то рефракция значительно усиливается. Лучи света, идущие от предметов на Земле, описывают подобие дуги и возвращаются вниз, иногда за десятки, даже сотни километров от своего источника. Тогда наблюдается "поднятие горизонта", или верхний мираж.

Жители Лазурного берега Франции ясным утром не раз видели, как на горизонте Средиземного моря, где вода сливается с небом, из моря поднимается цепочка Корсиканских гор, до которой от Лазурного берега примерно двести километров.

В том же случае, если дело происходит в самой пустыне, поверхность которой и прилегающие слои воздуха раскалены солнцем, наверху давление воздуха может оказаться большим, лучи станут загибаться в другую сторону. И тогда уже любопытные явления будут происходить с теми лучами, которые должны были, отразившись от предмета, сразу уткнуться в землю. Hо нет, они будут заворачивать кверху и, пройдя перигей где-то возле самой поверхности, уйдут в него.

Боковые миражи

Этот вид миражей может возникнуть в тех случаях, когда слои воздуха одинаковой плотности располагаются в атмосфере не горизонтально, как обычно, а наклонно или даже вертикально. Такие условия создаются летом, утром вскоре после восхода Солнца у скалистых берегов моря или озера, когда берег уже освещен Солнцем, а поверхность воды и воздух над ней еще холодные.

Боковые миражи неоднократно наблюдались на Женевском озере. Видели лодку, которая приближалась к берегу, а рядом с нею в точности такая же лодка удалялась от берега. Боковой мираж может появиться у каменной стены дома, нагретой Солнцем, и даже сбоку от нагретой печи. Природа этого миража точно такая же, как у озерного. Конечно, лучи света отражаются не от стены, а от примыкающей к ней более горячей прослойки воздуха.

Радуга

Радуга даёт уникальную возможность наблюдать в естественных условиях разложение белого света в спектр.

Радуга обычно появляется после дождя, когда Солнце стоит довольно низко. Где-то между Солнцем и наблюдателем ещё идёт дождь. Солнечный свет, проходя сквозь капли воды, многократно отражается и преломляется в них, как в маленьких призмах, и лучи разного цвета выходят из капель под различными углами. Это явление называется дисперсией (т. е. разложением) света. В результате образуется яркая цветная дуга (а на самом деле крут; целиком его можно увидеть с самолёта).

Иногда наблюдаются сразу две, реже - три разноцветные дуги. Первую радугу создают лучи, отразившиеся внутри капель однократно, вторую - лучи, отразившиеся дважды, и т. д. В 1948 г. в Ленинграде (ныне Санкт-Петербург) среди туч над Невой появилось сразу четыре радуги.

Вид радуги, яркость цветов, ширина полос зависят от размеров и количества водяных капель в воздухе. Яркая радуга бывает летом после грозового дождя, во время которого падают крупные капли. Как правило, такая радуга предвещает хорошую погоду.

В яркую лунную ночь можно увидеть радугу от Луны. Радуга возникает в свете полной луны, когда идет дождь. Поскольку человеческое зрение устроено так, что при слабом освещении наиболее чувствительные рецепторы глаза - "палочки" - не воспринимает цвета, лунная радуга выглядит белесой; чем ярче свет, тем "цветнее" радуга (в её восприятие включаются цветовые рецепторы - "колбочки").


Полярные сияния

Одним из красивейших оптических явлений природы является полярное сияние. В большинстве случаев полярные сияния имеют зеленый или сине-зеленый оттенок с изредка появляющимися пятнами или каймой розового или красного цвета.

Полярные сияния наблюдают в двух основных формах – в виде лент и в виде облакоподобных пятен. Когда сияние интенсивно, оно приобретает форму лент. Теряя интенсивность, оно превращается в пятна. Однако многие ленты исчезают, не успев разбиться на пятна. Ленты как бы висят в темном пространстве неба, напоминая гигантский занавес или драпировку, протянувшуюся обычно с востока на запад на тысячи километров. Высота этого занавеса составляет несколько сотен километров, толщина не превышает нескольких сотен метров, причем так нежен и прозрачен, что сквозь него видны звезды. Нижний край занавеса довольно резко и отчетливо очерчен и часто подкрашен в красный или розоватый цвет, напоминающий кайму занавеса, верхний – постепенно теряется в высоте и это создает особенно эффектное впечатление глубины пространства.

Различают четыре типа полярных сияний:

1.Однородная дуга – светящаяся полоса имеет наиболее простую, спокойную форму. Она более ярка снизу и постепенно исчезает кверху на фоне свечения неба;

2.Лучистая дуга – лента становится несколько более активной и подвижной, она образует мелкие складки и струйки;

3.Лучистая полоса – с ростом активности более крупные складки накладываются на мелкие;

При повышении активности складки или петли расширяются до огромных размеров, нижний край ленты ярко сияет розовым свечением. Когда активность спадает, складки исчезают и лента возвращается к однородной форме. Это наводит на мысль, что однородная структура является основной формой полярного сияния, а складки связаны с возрастанием активности.

Часто возникают сияния иного вида. Они захватывают весь полярный район и оказываются очень интенсивными. Происходят они во время увеличения солнечной активности. Эти сияния представляются в виде беловато-зеленой шапки. Такие сияния называют шквалами.


По яркости сияния разделяют на четыре класса, отличающиеся друг от друга на один порядок (то есть в 10 раз). К первому классу относятся сияния, еле заметные и приблизительно равные по яркости Млечному Пути, сияние же четвертого класса освещают Землю так ярко, как полная Луна.

Надо отметить, что возникшее сияние распространяется на запад со скоростью 1 км/сек. Верхние слои атмосферы в области вспышек сияний разогреваются и устремляются вверх, что сказалось на усиленном торможении искусственных спутников Земли, проходящих эти зоны. Во время сияний в атмосфере Земли возникают вихревые электрические токи, захватывающие большие области. Они возбуждают дополнительные неустойчивые магнитные поля, так называемые магнитные бури. Во время сияний атмосфера излучает рентгеновские лучи, которые, по-видимому, являются результатом торможения электронов в атмосфере. Интенсивные вспышки сияния часто сопровождаются звуками, напоминающими шум, треск. Полярные сияния вызывают сильные изменения в ионосфере, что в свою очередь влияет на условия радиосвязи. В большинстве случаев радиосвязь значительно ухудшается. Возникают сильные помехи, а иногда полная потеря приема.[5]

Как возникают полярные сияния.

Земля представляет собой огромный магнит, южный полюс которого находится вблизи северного географического полюса, а северный - вблизи южного. Силовые линии магнитного поля Земли, называемые геомагнитными линиями, выходят из области, прилегающей к северному магнитному полюсу Земли, охватывает земной шар и входят в него в области южного магнитного полюса, образуя тороидальную решетку вокруг Земли.

Долго считалось, что расположение магнитных силовых линий симметрично относительно земной оси. Теперь выяснилось, что так называемый «солнечный ветер» – поток протонов и электронов, излучаемых Солнцем, налетаю на геомагнитную оболочку Земли с высоты около 20000 км, оттягивает ее назад, в сторону от Солнца, образуя у Земли своеобразный магнитный «хвост».[6]

Электрон или протон, попавшие в магнитное поле Земли, движутся по спирали, как бы навиваясь на геомагнитную линию. Электроны и протоны, попавшие из солнечного ветра в магнитное поле Земли, разделяются на две части. Часть из них вдоль магнитных силовых линий сразу стекает в полярные области Земли; другие попадают внутрь тероида и движутся внутри него, как это можно по правилу левой руки, вдоль замкнутой кривой АВС. Эти протоны и электроны в конце концов по геомагнитным линиям также стекают в область полюсов, где возникает их увеличенная концентрация. Протоны и электроны производят ионизацию и возбуждение атомов и молекул газов. Для этого они имеют достаточно энергии, так как протоны прилетают на Землю с энергиями 10000-20000эв (1эв= 1.6 10-19 дж), а электроны с энергиями 10-20эв. Для ионизации же атомов нужно: для водорода – 13,56 эв, для кислорода - 13,56 эв, для азота – 124,47 эв, а для возбуждения еще меньше.[7]

Возбужденные атомов газов отдают обратно полученную энергию в виде света, наподобие того, как это происходит в трубках с разреженным газом при пропускании через них токов.

Спектральное исследование показывает, что зеленое и красное свечение принадлежит возбужденным атомам кислорода, инфракрасное и фиолетовое – ионизованным молекулам азота.

Другим слабым источником красного света являются атомы водорода, образовавшие в верхних слоях атмосферы из протонов прилетевших с Солнца. Захватив электрон, такой протон превращается в возбужденный атом водорода и излучает красный свет.[8]

Но научное объяснение всех явлений, связанных с полярными сияниями, встречает ряд трудностей. Например, неизвестен точно механизм ускорения частиц до указанных энергий, не вполне ясны их траектории в околоземном пространстве, не все сходится количественно в энергетическом балансе ионизации и возбуждения частиц, не вполне ясен механизм образования свечения различных видов, неясно происхождение звуков.[9]