Смекни!
smekni.com

по теме: Горячие источники (стр. 3 из 10)

В июне 2004 года фрайбургским исследователям удалось преодолеть считавшийся тогда недостижимым барьер: коэффициент полезного действия солнечного элемента из поликристаллического кремния составил 20,3%. Это – очередной мировой рекорд, установленный в ИСЭ.

Другая возможность повысить эффективность выработки электрического тока – фокусировать солнечный свет с помощью линз (энергоустановка с фотоэлектрическими элементами и линзовыми концентраторами установлена на крыше института во Фрайбурге). Это позволяет в несколько раз уменьшить размер солнечных элементов и заменить кремний более дорогими, но и более эффективными материалами [7].

Фокусировать свет можно только в ясную погоду, когда солнечные лучи не рассеиваются облаками. Кроме того, модули с линзовыми концентраторами нуждаются в системах слежения за солнцем: массовая их установка на крышах частных домов – задача довольно сложная. В Центральной Европе ещё долгое время на крышах зданий будут красоваться безконцентраторные кремневые солнечные батареи.

Но их конструкция в скором времени изменится. В одном из отделов ИСЭ разрабатывают солнечные элементы, для которых потребуется в двадцать раз меньше высокочистого кремния. Тончайший его слой будут напылять на дешёвую подложку (См. Приложение 14). По эффективности такой элемент практически не уступает тем, которые используются сейчас [7].

Факты

Солнце отдаёт Земле примерно в 15 тысяч раз больше энергии, чем необходимо человечеству.

Первая солнечная электростанция появилась в Египте в 1912 году.

В Австралии с 1987 года проводится гонка солнцемобилей «Всемирный солнечный вызов» [7].

«Всемирный солнечный вызов» - солнечная батарея, длиной 315 метров, которую в 2001 году установила в Японии компания Sanyo, вырабатывает в год 530 тыс. кВ/ч электроэнергии [7].

В 2007 году на юге Португалии заработала крупнейшая в мире солнечная электростанция. Она снабжает электричеством восемь тысяч домов [7].

В 1985 году в Крыму построили первую в СССР солнечную электростанцию СЭС – 5 мощностью 5 МВт [7].

Объём солнечной энергии, поступающей за три дня на территорию России, превышает годовую выработку электроэнергии в нашей стране [7].

В Испании практически всё новое жильё оборудуется водонагревателями, работающими от солнечной энергии.

В Австрии на 1000 жителей приходится 288 квадратных метров солнечных батарей, во Франции только 9 кв. м [3].

Сотрудники ИСЭ исследуют также возможности солнечных термических систем. С их помощью можно наладить эффективное производство электроэнергии, прежде всего в пустынях. В традиционных установках такого рода параболические желоба – концентраторы фокусируют солнечный свет и направляют его на трубы, по которым циркулирует теплоноситель. Нагреваясь, теплоноситель превращается в пар, который поступает на турбины, аналогичные тем, которые применяются на традиционных электростанциях, ну а те уже вращают генераторы [7].

В ИСЭ пытаются заменить эти параболические зеркала более дешёвыми призмами, которые направляют свет в одну точку. Одновременно немецкие инженеры стремятся усовершенствовать конструкцию труб и прежде всего - структуру их поверхностей. Задача – добиться высоких температур при минимальных потерях тепла.

Это очень перспективное направление. Даже на современном уровне развития «солнечной» технологии потребности человечества в электрической энергии можно было бы полностью удовлетворить, застроив всего лишь один процент территории Сахары солнечными термическими электростанциями [7].

Учёные создают водородные топливные элементы, которые могут служить источником энергии для электронных приборов (См. Приложение15). Необходимый для работы таких элементов водород можно получать из воды с помощью солнечного света.

Ещё одно из важных направлений исследований ИСЭ – это «солнечная» архитектура. Даже в Германии, которой не приходится особо жаловаться на холодный климат, около 40 процентов всей производимой энергии расходуется на обогрев, кондиционирование и освещение зданий. Сэкономить большую часть этой энергии можно было бы за счёт применения так называемой умной архитектуры. В рамках этой концепции всё здание рассматривается как объект, принимающий и аккумулирующий солнечную энергию.

Учёные из Фрайбурга разработали двойные окна – хамелеоны с покрытием из оксида вольфрама. Если солнце светит слишком ярко, вы нажимаете кнопку, и в пространство между стёклами начинает поступать газовая смесь. Содержащийся в ней водород вступает в реакцию с оксидом вольфрама, и стёкла постепенно начинают приобретать голубоватый оттенок – происходит плавное затемнение. А если подать кислород, вольфрамовое покрытие снова становится прозрачным. Другое изобретение, разработанное сотрудниками ИСЭ – покрытие для стен, содержащее микроскопические гранулы особого парафина, который начинает плавиться уже при температуре плюс 24 0С, и таким образом охлаждает помещение [7].

Весьма перспективное направление научных разработок – «солнечные» кондиционеры. Вместо электрического тока они используют тепло Солнца, которого достаточно для того, чтобы началось испарение специальных легкокипящих жидкостей. Подобные кондиционеры работают с максимальной мощностью тогда, когда солнце светит ярче всего и потребность в охлаждении наиболее высока (См. Приложение). Использование их перспективно в тропических странах [7].

Французские учёные установили в 190 году солнечный концентратор и башню – печь в Пиренейских горах, где производится плавка металлов. Это самая первая и пока самая большая в мире солнечная печь. Площадь вогнутого зеркала 1900 квадратных метров, мощность 1100 кВт. В Пиренейских горах на высоте 100 метров свыше 200 дней в году ярко светит солнце, при этом воздух чист, пыли почти нет. На склоне горы в несколько рядов установили 63 подвижных зеркала – гелиостата, которые, поймав солнечный «зайчик», направляют его в концентратор – параболическое зеркало диаметром 2 метра. Концентратор отражает солнечные лучив находящуюся напротив башню – печь, где температура достигает 4000 °С и где и плавление металлов. Вся работа осуществляется с помощью компьютеров. Гелиостаты моют два раза в год, а концентратор за шестнадцать лет работы понадобилось помыть только два раза.

Глава III. Биотопливо

Солнечные батареи, созданные самой природой, содержатся в клетках растений. Хлоропласты - энергетические станции растений, эффективно работают, - получается биотопливо (См. Приложения 17, 18, 19).

Из углекислого газа и воды хлоропласты, используя солнечное излучение, синтезируют органику, богатую энергией: целлюлозу (основа древесины) и крахмал (углевод в плодах и семенах).

Сегодня на биотопливо возлагают надежды: генномодифицированные растения производят биомассу в больших объемах. Из ботвы гигантской кукурузы гонят спирт (См. Приложение 20). В Бразилии сейчас на таком спирте ездят почти все машины (См. Приложение 21). Под посевы кукурузы бразильцы вырубают все больше амазонских лесов [4].

Вообще, конкуренция посевов - производителей биотоплива и пищевого сырья - проблема острая. В 2008 году резко возрос спрос на продукты питания: богатейшие Индия и Китай решили покупать еду, а не производить.

Крупнейший мировой экспортер, США, не смог ответить на этот спрос: именно в последние годы в этой стране стремительно растет площадь биотопливных посевов. В итоге мировая цена на рис повысилась на 70%, и в бедных странах Азии начался голод [4].

Частичное решение может содержаться в разработках группы исследователей из Университета штата Техас, результаты, которых опубликованы совсем недавно. Бактерии из группы Cyanobacter был вживлён ген от другой бактерии, Acetobacter xylynum, которая производит целлюлозу – если её только кормить. Цианобактерии же кормить не надо: они фотосинтезируют, то есть пользуются бесплатным солнцем, углекислым газом и водой. Таким образом, если реакторы с микробом-химерой выставить на солнце, они будут бешено размножаться и давать целлюлозу. Причем эта целлюлоза отличается от своего естественного прототипа: ее молекулы легче перегоняются в спирт. А это уже сулит вдвое более эффективное использование земли - если считать по калориям топлива на единицу повседневной площади [4].

Выброс парниковых газов при сжигании биотоплива точно такой же, как и при сгорании углеводородов (считая в калориях). Однако в процессе формирования биотоплива углекислый газ поглощается из атмосферы - при фотосинтезе. В итоге возникает баланс и переизбытка CO2 в атмосфере не создается [4].

С 2007 года все автомобили Skoda Octavya приспособлены для заправки биодизелем – в Чехии его производят около 60 тысяч тонн в год (См. Приложение 22).

Из пищевых отходов, навоза и соломы делают биогаз, по потенциалу он не уступает природному. [4].

В 2007 году в Лондоне появился первый европейский поезд на биодизельном топливе (См. Приложение 23).

Биотопливо, получаемое из стеблей сахарного тростника, кукурузы, сои или семян рапса, достаточно дорогостояще. Для удешевления его производства учёные из университетов Хаэна и Гранады (Испания) предлагают использовать оливковые косточки, которые в огромном количестве остаются после производства растительного масла и консервирования столовых оливок. В лабораторных условиях из 100 килограммов оливковых косточек удалось получить 5,7 килограммов биоэтанола, которым можно заменить бензин и дизельное топливо [2].

Экономисты Университета Миннесоты подсчитали, что если продовольственные культуры сегодняшними темпами будут идти на выпуск этанола, количество голодающих в мире возрастёт к 2020 году на 50 %