Смекни!
smekni.com

Використання комутаційних функцій при страхуванні на чисте дожиття (стр. 2 из 2)


Задача 9

Студент юридичного факультету КПІ віком 20 років уклав довічний договір страхування з умовою виплати страхових внесків щороку. Страхова сума згідно договору рівна 10000 грн., і=0,075. Розрахувати величину щорічного внеску за допомогою наступної формули:

Задача 10

За умовою попередньої задачі припустимо, що період сплати внесків при довічному страхуванні обмежений до віку 45 років. Коефіцієнт розстрочки буде мати вигляд:

Тоді внесок при обмеженому періоді сплати буде обчислюватися за формулою:


Отже, сплачуючи щорічно 57,43грн. з 18 до 43 років, цей отримає 10000 грн. у випадку своєї смерті.


Висновки

При виконанні курсової роботи ми пересвідчились що комутаційні функції використовуються для розрахунку нетто-премій для елементарних видів страхування, зокрема страхування на чисте дожиття, страхування рент та страхування рент на випадок смерті.

При страхуванні на чисте дожиття, коли вичікувальний період відсутній і сплата страхової премії відбувається протягом усього часу дії договору строк страхування на певну кількість років рівний початку періоду сплати премій. Іншими словами величина зносу з одиничної страхової суми рівна одночасній вартості страхування, поділеній на коефіцієнт розстрочки (виплат).

Різновидом страхування на дожиття є страхування рент, коли передбачений ряд виплат протягом певного періоду, а також довічно. Довічно виплати сплачуються за умови дожиття страхувальником до віку, коли починаються виплати.

У страхуванні на виплату смерті відсутній вичікувальний період. Це пов’язане з тим, що страховим випадком при даному виді страхування є смерть застрахованого.

Комбінація цих трьох видів страхування являється змішаним страхуванням життя. Премія при такому страхуванні рівна сумі премій на дожиття та одноразових премій страхування на випадок смерті.