Смекни!
smekni.com

Учебно-методическое пособие Омск Издательство Сибади 2005 (стр. 8 из 18)

Существование элементарного кванта действия служит препятствием для установления одновременно и с одинаковой точностью величин «канонически связанных», т.е. положения и величины движения частицы.

Противоречия корпускулярно-волновых свойств микрообъектов являются результатом неконтролируемого взаимодействия микрообъектов и макроприборов. Имеются два класса приборов: в одних квантовые объекты ведут себя как волны, в других – подобно частицам. В экспериментах мы наблюдаем не реальность как таковую, а лишь квантовое явление, включающее результат взаимодействия прибора с микрообъектом. М. Борн образно заметил, что волны и частицы – это «проекции» физической реальности на экспериментальную ситуацию.

Фундаментальным принципом квантовой механики, наряду с соотношением неопределенностей, является принцип дополнительности, которому Н. Бор дал следующую формулировку: «Понятие частицы и волны дополняют друг друга и в то же время противоречат друг другу, они являются дополняющими картинами происходящего».

Каждая фундаментальная теория имеет определенные границы применимости. И эти границы устанавливаются весьма строго и точно, особенно если открыта более глубокая теория, описывающая те же самые процессы. Например, классическая механика Ньютона правильно описывает движение больших тел только в тех случаях, когда скорость движения их много меньше скорости света, что выяснилось только после создания специальной теории относительности и релятивистской механики, справедливой для описания движения тел с любыми скоростями. Но появление новой теории, например, релятивистской механики, совсем не означает, что старая классическая механика утрачивает свою ценность. Движение макроскопических тел со скоростями намного меньше скорости света всегда будет описываться механикой Ньютона, потому что в этой области скоростей релятивистская механика дает ничтожные поправки, учет которых не имеет смысла. Согласно идее Бора законы классической механики подтверждаются с большой точностью в широкой области явлений, поэтому следует считать, что и новая, более точная теория в применении к этим явлениям должна давать те же результаты, что и механика Ньютона. Никакая новая теория не может быть справедливой, если она не содержит в качестве предельного случая старую теорию, относящуюся к тем же явлениям, поскольку старая теория уже оправдала себя в своей области. В общей форме этот принцип формулируется так: теории, справедливость которых была экспериментально установлена для определенной группы явлений, с построением новой теории не отбрасываются, но сохраняют свое значение для прежней области явлений как предельное выражение законов новых теорий.

В классической механике причинность имеет механический, а в квантовой – статистический смысл. Понятия «случайность» и «закономерность» дополнительны друг по отношению друг к другу. Они оба одновременно и равно необходимы, чтобы определить новое понятие «квантово-механическая причинность».

Свойства квантовых объектов противоречивы, и слить их воедино без насилия над здравым смыслом можно только в уравнениях квантовой механики. Квантовая механика – это математическая схема, позволяющая вычислять физически измеримые характеристики атомных явлений.

Контрольные вопросы

1. Недостаточность классического описания природы.

2.Единство корпускулярных и волновых свойств света. Корпускулярно-волновой дуализм материи. Волны де Бройля.

3.Объясните противоречия в теории излучения абсолютно черного тела, которые сложились к началу ХХ в. Объясните суть «ультрафиолетовой катастрофы», приведшей к появлению квантовой гипотезы Планка. Почему сложившаяся ситуация в теории равновесного излучения получила такое название?

4.Волновая механика Шредингера. Смысл Y-функции, ее вероятностный характер.

5.Соотношение неопределенностей Гейзенберга. Принцип дополнительности. Роль измерительного прибора в физике.

6.Причинность и случайность, вероятность и закономерность.

7.Сформулируйте основные положения квантово-полевой картины мира.

8.Каковы особенности физической реальности в квантовой механике?

Библиографический список

Основной:

[1, гл. 6 – 8];

[2, разд. 2, гл. 8, § 1-7; разд. 3, гл. 3, § 1-4];

[3, гл. 4, § 4.1 – 4.7].

Дополнительной: [9, 25, 39, 56, 57, 61, 78].


Семинар 8. СТРОЕНИЕ И ЭВОЛЮЦИЯ ЗВЕЗД И ПЛАНЕТ. СОЛНЕЧНАЯ СИСТЕМА. СТРОЕНИЕ И ЭВОЛЮЦИЯ ЗЕМЛИ

Во все времена люди хотели знать, откуда и каким образом произошел мир. Вселенную в целом изучает наука, называемая космологией (наука о космосе). Космология в своей основе открывает упорядоченность нашего мира и нацелена на поиск законов его функционирования. Открытие этих законов и представляет собой цель изучения Вселенной как единого упорядоченного целого.

Наряду с космологией, исследованием космических тел и космических явлений занимается такая наука, как астрономия (от греч. астрон - звезда и номос - закон), она первоначально возникла как наука о наблюдаемых на небе звёздах. Сейчас в ХХ веке в связи с развитием технических средств наблюдения и космонавтики она резко расширила границы своего предмета исследования. Различные астрономические дисциплины – астрофизика, астрохимия, астробиология, небесная механика, радиоастрономия и др. - исследуют строение и развитие космических тел и систем: планет, звёзд, галактик и т.д., давая эмпирический материал для глобальных обобщений, которыми занимается космология.

Эти учения базируются на нескольких предпосылках: 1) формулируемые физикой универсальные законы функционирования мира считаются действующими во всей Вселенной; 2) производимые астрономами наблюдения тоже признаются распространенными на всю Вселенную; 3) истинными признаются только те выводы, которые противоречат возможности существования самого наблюдателя – человека (антропный принцип).

Выводы космологии называются моделями происхождения и развития Вселенной.

Модель расширяющейся Вселенной. Первым событием глобального масштаба в экспериментальной космологии было открытие в 1929 г. американским астрономом Э. Хабблом так называемого «красного смещения» в спектрах галактик. Было обнаружено, что чем больше расстояние до галактик, тем сильнее спектральные линии излучения этих галактик смещаются в красную область светового спектра. Согласно эффекту Доплера, это означало, что все галактики удаляются от нас со скоростями, прямо пропорциональными расстоянию до них. Этот факт говорил о том, что Вселенная расширяется как единое целое. Признание этого факта логически ведет к заключению о том, что расширение должно было начаться когда-то в прошлом, и в этот начальный момент все вещество должно было находиться в сверхплотном состоянии. Так как при сжатии вещество нагревается, следовательно, температура на начальном этапе развития Вселенной должна быть очень высокой, а первые мгновения этого начального этапа должны напоминать гигантский взрыв. Исходя из этих предпосылок, американский физик Г. Гамов создает модель горячей Вселенной, которая получила также название теория Большого взрыва. Согласно этой теории, наша Вселенная возникла в результате гигантского взрыва примерно 20 млрд лет назад. В результате этого взрыва в конечном итоге возникли галактики, звёзды, планеты и другие космические объекты, которые сейчас продолжают разлетаться от эпицентра взрыва, удаляясь друг от друга.

Согласно теории Большого взрыва, Вселенная возникла из сингулярности - особого состояния материи с удивительными свойствами. Примерно 20 млрд лет назад, в момент, предшествовавший Большому взрыву, размеры нашей Вселенной составляли несколько десятков сантиметров, плотность вещества была приблизительно 1093 г/см3, а температура превышала 1013 К. Современная физика пока ещё не разработала теорий, способных описать подобные состояния вещества. Что касается причин взрыва, то для науки это также пока загадка. Через 0,01 с после взрыва температура Вселенной упала до 1011 К. При такой температуре атомы и молекулы вещества существовать не могут - Вселенную наполняли одни лишь элементарные частицы. Через 3 мин температура Вселенной понизилась до 109 К. В этот момент созрели условия для образования вещества - возникли ядра атомов водорода и гелия. После этого момента наступил довольно длительный период (примерно 700000 лет), в течение которого Вселенная расширялась без особых изменений до тех пор, пока ядра атомов водорода и гелия не соединились со свободными электронами и не образовали нормальные нейтральные атомы газов водорода и гелия. Именно в эту эпоху формируется наблюдаемое нами реликтовое излучение.

После возникновения водорода и гелия наступает так называемая «звездная эпоха». В действие вступает сила тяготения, отныне преобладающая над всеми другими типами физического взаимодействия. Частицы газа, наполняющие Вселенную, начинают притягиваться друг к другу, и постепенно возникают галактики, звезды и планеты. Примерно через 15 млрд лет после Большого взрыва формируется межзвездное облако, которое дало начало Солнечной системе. В результате его сжатия в течение 400 млн лет возникают планеты, в том числе и Земля. Через 17 млрд лет после Большого взрыва на Земле появляются первые микроорганизмы, и начинается этап биологической эволюции, который приводит, наконец, к возникновению человека (Homo sapiens).

Галактики. Галактика представляет собой гигантские скопления звезд и их систем, имеющие свой центр (ядро) и различную форму (сферические, спиралевидные, эллиптические, сплюснутые и т.д.). Наша Галактика называется Млечный Путь и состоит из 150 млрд звезд. Она состоит из ядра и нескольких спиралевидных ветвей. Ее размеры – 100 световых лет. Большая часть звезд нашей Галактики сосредоточена в гигантском «диске» толщиной около 1500 световых лет. На расстоянии 30 тыс. световых лет от центра Галактики расположено Солнце.