Смекни!
smekni.com

Учебно-методическое пособие для аспирантов и соискателей ученой степени кандидата наук Архангельск (стр. 5 из 17)

Проблема детерминизма в философии и физике. Механистический детерминизм.

Детерминизм – это философское учение о всеобщей закономерной взаимосвязи и взаимообусловленности явлений материального и духовного мира. Физика, раскрывая взаимосвязи в природе, познавая объективные законы природы, подтверждает принцип детерминизма и наполняет его конкретнонаучным содержанием.

Детерминизм характеризуется следующими философскими категориями: причина и следствие, возможность и действительность, случайность и необходимость, вероятность, закон. Ядром детерминизма является принцип причинности: любое событие имеет причину. Причиной называют явление, которое при определённых условиях закономерно порождает другое явление, называемое следствием. В ответе следует охарактеризовать основные философские подходы к пониманию природы причинной связи. С позиции диалектического материализма причинные связи существуют объективно, носят закономерный характер и являются универсальными связями. Причина порождает следствие, передавая ему материю, энергию, информацию. А следствие становится причиной новых изменений.

Кроме причинных существует и множество других связей: структурные (связь между элементами структуры), функциональные (связь между свойствами предмета, выражаемая функцией – математическим уравнением), целевые (связь, при которой развитие системы подчинено определённой цели). Среди многообразных связей выделяются такие, которые являются законами. Закон – это необходимая, существенная, общая, повторяющаяся связь.

Исторически первой формой детерминизма был механистический детерминизм – это философское учение, абсолютизирующее динамические законы. Динамические законы – это физические законы, отображающие объективные закономерности в форме однозначной связи физических величин. Динамические законы описывают функциональную связь, при которой аргументы функции и её значение являются точно определёнными величинами. Например, классическая механика, зная первоначальные координаты и импульсы материальных точек, может точно описать движение, т.е. определить координаты и импульсы точек в последующие моменты времени. Другой пример физической теории динамического типа – электродинамика Максвелла, которая точными величинами описывает изменения электромагнитного поля. Динамическими теориями являются также механика сплошных сред, термодинамика, теория гравитации (ОТО).

Сторонники механистического детерминизма не признавали никаких других видов закономерностей, кроме динамических. А невозможность описать некоторые явления с помощью динамических законов они объясняли ограниченностью знаний. Ещё древнегреческий философ Демокрит утверждал, что всё в мире происходит с необходимостью, а случайностью люди называют то, причину чего не могут объяснить. В начале XIX века механистический детерминизм достиг апогея во взглядах П. Лапласа. В науку вошло понятие «демон Лапласа» - это фантастический сверхразум, который, имея полное описание современного состояния мира и зная законы его движения, смог бы точно предсказать будущее и воссоздать прошлое. Механистический детерминизм не признаёт объективное существование случайности, отождествляет причинность и необходимость, т.е. является примером метафизического, упрощённого представления о мире.

Вероятностный детерминизм. Соотношение динамических и вероятностных законов.

Во второй половине XIX века выявляется ограниченность механистического детерминизма. Максвелл, пытаясь описать движение молекул газа, т.е. систему из огромного числа элементов, пришёл к выводу об ограниченности динамических законов классической механики и ввёл понятие вероятностного (статистического) закона (1859). Вероятностный закон, как и динамический, с помощью уравнений устанавливает жёсткую, однозначную связь состояний системы. Т.е. зная первоначальное состояние системы, вероятностный закон может предсказать её состояние в последующие моменты времени. Отличие вероятностных и динамических законов состоит в способе описания состояния системы. Если динамический закон описывает состояние точными значениями величин, то вероятностный оперирует средними величинами, распределением вероятностей.

В ХХ веке было открыто множество вероятностных законов, и возникла дискуссия об их соотношении с динамическими законами. Эта дискуссия обострилась после создания квантовой механики, описывающей неопределённый и вероятностный характер физических характеристик микрообъектов. Вероятностный закон не может точно предсказать значение той или иной физической величины, а предсказывает её среднее значение; не может точно предсказать событие, а предсказывает его вероятность. Поэтому возникает ощущение неполноты такого знания, его приближённого характера. В частности, возникают вопросы о полноте квантовой механики: является ли статистическое описание микрообъектов единственно возможным? Существуют ли более глубокие динамические законы, описывающие движение микрообъектов, но скрытые за статистическими законами квантовой механики? Такие учёные как Н. Бор, В. Гейзенберг, М. Борн считали вероятностные законы основными законами природы, а квантовое описание микрообъектов полным и единственно возможным (соотношение неопределённостей Гейзенберга, принцип дополнительности Бора). При этом, не имея чёткой философской позиции, они делали вывод об индетерминизме микромира. Индетерминизм – это философское учение, отрицающее всеобщие закономерные взаимосвязи объективных явлений. Ошибка этих учёных в том, что они сводили детерминизм к его первой и ограниченной форме – к механистическому детерминизму и заявляли об отсутствии такой детерминации в микромире.

Учёные, несогласные с такой позицией, объявляли квантовую механику неполной, а её знания промежуточными (Эйнштейн, Планк, Шредингер). Обобщая этот вывод, они переносили его и на все остальные вероятностные законы, считая их результатом неполноты наших знаний. Этот вывод в настоящее время также признаётся ошибочным.

На самом деле, наличие вероятностных законов противоречит только механистическому детерминизму. Современный, вероятностный детерминизм не только признаёт их наличие, но и считает их основным типом законов. Вероятностный закон соответствует всем признакам объективного закона, как существенной, необходимой, общей и повторяющейся связи. А значит, распространённость таких законов доказывает всеобщую и закономерную взаимосвязь явлений, т.е. подтверждает детерминизм.

Динамические законы – это идеализация реальных отношений, выделение из бесконечного множества условий отдельных существенных связей. Они применимы для описания реальных объектов, которые настолько близки к идеализированным объектам, что случайные отклонения величин ничтожно малы, и ими можно пренебречь. Такими объектами являются устойчивые системы из небольшого числа элементов и с ограниченным набором условий, существенно влияющих на систему (например, Солнечная система). Но большинство реальных объектов не отвечают этим признакам (например, погода на Земле). Поэтому применение динамических законов ограниченно.

Вероятностные законы – это более глубокая, более общая и совершенная форма описания объективных связей. Все современные вероятностно-статистические теории содержат в качестве своего приближения соответствующие динамические теории (следует привести примеры). Вероятностные законы раскрывают диалектику случайности и необходимости. Они описывают такие закономерные связи, которые реализуются посредством большого числа событий, каждое из которых в отдельности является случайностью. Т.о. необходимость пробивает себе дорогу через массу случайностей, а случайность выступает формой проявления необходимости.

Открытия физики в ХХ веке заставили многих учёных сомневаться в верности принципа детерминизма. Но если бы мир подчинялся принципу индетерминизма, он был бы хаосом, в котором не было бы никаких законов и возможным было бы любое событие, любое чудо. Такой мир не поддавался бы научному познанию, т.к. наука познаёт законы. Новейшие открытия не опровергают принцип детерминизма, а расширяют его понимание. Дальнейшее развитие получили представления об объективности и всеобщности причинных связей, о наличии непричинных видов связи, об объективном содержании категорий «случайность» и «вероятность», о диалектике случайности и необходимости. Т.о. детерминизм остаётся одним их важнейших принципов философской и физической картины мира.

Проблема объективности в современной физике

В ХХ веке развитие квантовой механики породило дискуссию о проблеме объективности в современной физике. Традиционное представление об объективности научного знания было поставлено под сомнение. Диалектико-материалистическая теория познания предполагает принцип объективности истины: любая истина объективна по содержанию, но субъективна по форме. Объективность истины состоит в том, что ее содержание соответствует отражаемым объектам и не зависит от субъекта, от его воли и сознания. Субъективность формы истины означает, что истина всегда содержится в сознании субъекта, а поэтому может быть по-разному оформлена, выражена в сознании разных людей. Главное в характеристике истины – это ее объективность.

Сомнения в объективности физического знания возникли после того, как квантовая механика открыла странную природу микрообъектов, чьи свойства противоречат здравому смыслу, а точнее, обыденным представлениям человека, касающимся макромира. В качестве иллюстрации в ответе следует раскрыть суть соотношения неопределённостей Гейзенберга и привести пример квантовых эффектов (опыт с двумя щелями, туннельный эффект). Вся необычность поведения микрообъектов связана с их корпускулярно-волновым дуализмом. Наглядно представить эту двойственность и возникающие на её основе эффекты невозможно, потому что в макромире ничего подобного не существует, и любые аналогии будут выглядеть фантастически. Отсюда и возникли сомнения: микрообъекты сами по себе такие странные, или они такими предстают нам в наших экспериментах? В таком же ключе проблему объективности знания ставил И. Кант, разделявший «вещи в себе», т.е. объекты такие, какие они есть сами по себе, и «вещи для нас», т.е. объекты такие, какими они предстают человеку. Н. Бор в духе Канта утверждал, что человек в принципе не может познать микрообъекты такими, какие они есть сами по себе. Изучая микромир, человек неизбежно меняет его. При этом квантовая механика – это единственно возможное и полное описание микромира (следует раскрыть принцип дополнительности Бора). Другую позицию занимал Эйнштейн, который не мог смириться с парадоксальным поведением микрообъектов и вероятностным характером законов квантовой механики. Он объявлял такое описание неполным и считал, что могут быть найдены более точные динамические законы, которые опишут микрообъекты такими, какие они есть сами по себе, и которые устранят все парадоксы и странности (следует пояснить выражение Эйнштейна о том, что «бог не играет в кости»). Дальнейшее развитие квантовой механики показало ошибочность взглядов Эйнштейна, но дискуссия об объективности этой теории не прекратилась. Множество экспериментов с поразительной точностью подтверждают предсказания квантовой механики. Поэтому нет никаких сомнений в истинности этой теории. В тоже время очевидно, что в любом эксперименте человек действительно воздействует на поведение частиц, фиксируя их изменённые характеристики. Для разрешения этого противоречия в современной философии науки стали различать понятия «объектность» и «объективность». Объектность описания микромира, т.е. описание его таким, какой он есть вне экспериментов, не представляется возможным, по крайней мере, на данном этапе развития науки. Но объективность квантовой механики, т.е. её истинность, соответствие теории эксперименту, не вызывает сомнений.