Смекни!
smekni.com

по математике. На тему: «основные методы решения систем уравнений с двумя переменными» (стр. 2 из 3)

1) не умение, подставить уже полученную переменную (забывают или не видят).

Рассмотрим способ № 3: Если при решении систем уравнений учащийся не может ни заменить переменную, ни алгебраически сложить, то можно прибегнуть к этому способу. Разберём на примере.

Решим систему уравнений:

Домножим верхнее уравнение на 3. Получим:

Очевидно, что и в первом и во втором уравнениях есть 3y, только с разными знаками. Дальше решаем так же, как и прошлой системе (см. 3 разбор).

В конце получаем, что пара чисел (4,2; -4,8) является решением данной нам системы.

Во время решения систем нелинейных уравнений данным способом вызывает у учащихся трудности только по ряду причине:

1) не видят, что и насколько надо домножить;

2) не умение, подставить уже полученную переменную (забывают или не видят).

Рассмотрим способ подстановки: Этот метод или способ решения систем уравнений используется чаще всех. Грубо говоря, этот способ мы разобрали во всех остальных, т.к. заменяя одну систему на равносильную ей, мы находим одну переменную, а затем подставляем её значение в одно из уравнений данной нам системы. А, следовательно, возникающие проблемы при решении систем уравнений этим способом такие же, как и у всех остальных методов:

1) не умения, выражать одну переменную через другую;

2) не умение, подставить уже полученную переменную;

Итак, из всего выше сказанного можно сделать вывод:

во время решения систем нелинейных уравнений у учащихся возникают проблемы по ряду двум причинам:

1) не умения, выражать одну переменную через другую;

2) не умение, подставить уже полученную переменную;

3) не видят, что и насколько надо домножить.

ГЛАВА II: МЕТОДЫ РЕШЕНИЯ СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ[4].

В этой части реферата я рассмотрю два основных метода решения систем нелинейных уравнений:

1) Однородные системы уравнений;

2) Симметричные системы уравнений.

1) Однородные системы уравнений:

Уравнения называются однородными, если все слагаемые, содержащие неизвестные, имеют одну и ту же степень (показатели степеней разных неизвестных в слагаемых складываются).

Почему же мы выделяем такие системы? Оказывается, существует стандартная подстановка x = t×y (y ≠ 0), которая позволяет решить систему.

Пример:

Пусть x = t×y (y ≠ 0), тогда

Зная t, легко сразу найти

, учитывая, что
. Используя это, найдём y, а затем и x.

a) t =3

b) t =

При y = 0 решения нет.

Ответ: {(3√3; √3); (-3√3; √3); (4; 5); (-4; -5)}.

2) Системы симметричных уравнений:

Выражение с двумя неизвестными называется симметричным, если при замене одного неизвестного на другое и наоборот выражение не изменяется.

Любое симметричное выражение с двумя неизвестными может быть представлено, как алгебраическая комбинация, через два простейших симметричных выражения: a + b = t и a×b = z.

Пример:

Пусть

, тогда система имеет вид:
.

Вычтем из первого уравнения второе уравнение:

a)

По теореме, обратной теореме Виета, данная система порождает квадратное уравнение

+ 4m + 3 = 0, корнями которого являются x и y. В силу симметричности имеем: (1; 3); (3; 1).

b)

Из порождённого квадратного уравнения

- 4n + 3 = 0 следует решения (-3; -1); (-1; -3).

Ответ: {(1; 3); (3; 1); (-3; -1); (-1; -3)}.

ЗАКЛЮЧЕНИЕ.

Итак, в своём реферате я, во-первых, обобщил основные методы решения систем линейных уравнений с двумя переменными, во-вторых, рассмотрел некоторые методы решения систем нелинейных уравнений с двумя переменными, в-третьих, составил решебник, который, я надеюсь, поможет читающим мой реферат лучше понять тему, которую я выбрал, и сформирует навык решения систем уравнений. Другими словами я решил все задачи, которые стояли передо мной, и справился с моей целью. Надеюсь, мой реферат был интересен для чтения, повторения прошлого и знакомства с частью нового материала. Я постараюсь продолжить работу над этой темой в 10 классе в качестве дипломной работы.

СПИСОК ЛИТЕРАТУРЫ.

1. А.Х.Шахмейстер: «Системы уравнений математика»

2. Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков "АЛГЕБРА. Учебник для 9 класса с углублённым изучением математики" Москва 2006 год, 5-е издание - М.:Мнемозина, 439 страниц, иллюстрации.

3. М.Л.Галицкий, А.М.Гольдман, Л.И.Звавич "Сборник задач по алгебре 8-9 классы" Москва "Просвещение" 1994 год, 271 страница.

4. Системы уравнений. Поиск имён для исторической справки. http://ru.wikipedia.org

I. ИСОРИЧЕСКАЯ СПРАВКА[5]:

В XVII - XVIII в.в. приемы исключения разрабатывали:

Пьер де Ферма(17 августа 1601 - 12 января 1665, прожил 63 года) - французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. По профессии юрист, с 1631 года — советник парламента в Тулузе;

Исаак Ньютон(25 декабря 1642 (4 января 1643) - 20 марта 1727 (31 марта 1727), прожил 84 года) - английский физик, математик и астроном, один из создателей классической физики;

Готфрид Вильгельм фон Лейбниц(1 июля 1646 - 14 ноября 1716, прожил 70 лет) - немецкий философ, математик, юрист, дипломат;

Леонард Эйлер(4 (15) апреля 1707 - 7 (18) сентября 1783, прожил 76 лет) - швейцарский, немецкий и российский математик, внёсший значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук;

Этьенн Безу(31 марта 1730 - 27 сентября 1783, прожил 53 года) - французский математик, член Парижской академии наук (1758);

Жозеф Луи Лагранж(25 января 1736 - 10 апреля 1813, прожил 77 лет) - французский математик, астроном и механик итальянского происхождения. Наряду с Эйлером — лучший математик XVIII века.

II. РЕШЕБНИК.

В этой части приложения написан решебник на мою тему с целью помочь читающим попрактиковаться в решении систем уравнений с двумя переменными. Для каждого метода будет представлено по примеру и решение одного из них, в качестве примера как их решать тем или иным методом.

1) Метод замены переменной и алгебраического сложения и вычитания:

Для начала метод алгебраического сложения.

Пример №1:

Решение:

Можно заметить, что в двух уравнениях присутствует одна и та же переменная: 3y, только с разными знаками. Следовательно, их можно алгебраически сложить и мы получим равносильную систему: