Смекни!
smekni.com

работа по предмету : «Физика нефтяного и газового пласта» Тема : «Методы нестационарного заводнения» (Циклическое воздействие; смена направления фильтрационных потоков; форсированный отбор) (стр. 3 из 5)

Аганское месторождение является многопластовым. В разрезе слагающих пород выделено 22 продуктивных объекта (сверху вниз): пласт АВ13 нижнеалымской подсвиты, пласты АВ21, АВ22, АВ3, АВ4, АВ5, БВ0, БВ12, БВ21, БВ22, БВ3, БВ6 – ванденской свиты, БВ8, БВ9, БВ91, БВ92, БВ17, БВ181, БВ19, БВ20-21 – мегионской свиты нижнего мела, пласт ЮВ11, ЮВ1 – васюганской свиты верхней юры. Залежи нефти приурочены к Аганскому, Мало-Аганскому и Западно-Аганскому поднятиям.

В работе рассмотрены основные особенности геологического строения Аганского месторождения, геологическое строение основных пластов, краткое описание разреза, приводится характеристика физико-химических свойств и состава пластовых флюидов.

Проницаемость пласта БВ8 изменяется в большом диапазоне: от 1,0*10-3 мкм2 до 1405,6*10-3 мкм2, среднее значение проницаемости – 338,8*10-3 мкм2, средняя пористость 23,7% (диапазон изменения 19,4-25,6). Средняя нефтенасыщенная толщина 10,4 м, степень неоднородности зональная: - 0,86, послойная – 0,57, расчлененность – 6,2.

Начальная нефтенасыщенность по пласту составляет в среднем 71,2% (при колебаниях от 29,3 до 83,8%). Вязкость пластовой нефти составляет 1,08 мПа*с.

Для объекта БВ8 проектными документами была предусмотрена рядная система разработки. Пять разрезающих рядов разделили площадь залежи на 6 блоков.Во 2-м, 4-м, 5-м блоках утверждена пятирядная система разработки по сетке 500х700 м в зоне эксплуатации и с удаленностью первых рядов от линии нагнетания на 600 м. Выделен один (3-й), трехрядный блок с сеткой добывающих скважин 700х700 м и расстоянием между первым добывающим и нагнетательным рядами 850 м.

Проведенный анализ разработки Аганского месторождения показал в целом ее удовлетворительное состояние, однако процесс разработки Аганского месторождения осложняется большими объемами попутно добываемой воды. Обводненность добываемой продукции скважин составляет более 90%, что дает основание отнести остаточные запасы нефти Аганского месторождения к категории трудноизвлекаемых.

Есть все основания предполагать, что наращивание отборов жидкости без существенного увеличения работ по снижению обводненности продукции скважин и вовлечению в разработку слабодренируемых запасов нефти в низкопродуктивных зонах не позволит обеспечить утвержденный по месторождению коэффициент нефтеизвлечения.

Выявленные особенности разработки Аганского нефтяного месторождения, в частности, указывают на необходимость повышения эффективности разработки трудноизвлекаемых запасов нефти, приуроченных как к высоко-, так и низкопродуктивным коллекторам. На основании имеющегося опыта разработки месторождений страны в качестве технологии повышения эффективности разработки трудноизвлекаемых запасов нефти, предложена комплексная технология нестационарного заводнения в сочетании с адресными обработками скважин, позволяющая увеличить добычу нефти и сократить объемы попутно добываемой воды в результате перераспределения фильтрационных потоков за счет периодической работы нагнетательных скважин и применения технологий обработки скважин, направленных на изменение охвата пласта воздействием.

Нестационарное воздействие в комплексе с адресными обработками.

Применение эмульгатора ЭКС-ЭМ марки «Б»

Для увеличения эффективности разработки месторождений с трудноизвлекаемыми запасами нефти, так же может быть предложена комплексная технология, которая заключается в реализации нестационарного заводнения в сочетании с адресными обработками нагнетательных скважин путем закачки композиций химреагентов, направленных на снижение слоистой неоднородности, повышение охвата пласта, интенсификацию вытеснения нефти из низкопроницаемых пропластков, ограничение непроизводительной закачки воды в уже промытые, высокопроницаемые прослои.

Наиболее известными в практике являются технологии закачки различных полимерных систем, композиций на основе жидкого стекла

(Предварительный анализ полученных результатов показывает, что средний удельный технологический эффект составляет 14 т дополнительно добытой нефти на 1 т жидкого стекла), а также обратных эмульсий. Эти технологии давно внедряются и широко используются нефтегазодобывающими предприятиями различных регионов России.

Итак, для получения обратных эмульсий используется маслорастворимый эмульгатор ЭКС-ЭМ с концентрацией от 1 до 4% , в качестве стабилизатора обратных эмульсий - хлористый кальций с концентрацией 1-4% (исходная концентрация водного раствора CaCl2 составляла 30%). В качестве углеводородной фазы используется стабильный бензин, нефть (вязкость 2,2 мПа*с) либо смесь керосина с толуолом. Количество углеводорода в эмульсии составляет 20%, остальное водная фаза, представленная моделью пластовой воды с минерализацией 16 г/л (11,5 г/л NaCl и 4,5 г/л CaCl2).

В ходе исследования физико-химических свойств обратных эмульсий была определена стабильность эмульсий во времени и при различных температурах с последующим качественным и количественным анализом фазового состояния обратной эмульсии; Исследовалось фазовое поведение ОЭ при контакте с нефтью и пластовой водой в статических и динамических условиях; проведено измерение реологических параметров обратных эмульсий на ротационном вискозиметре “Реомат-30” при скорости сдвига от 0,0615 до 452 с-1 и температурах 20, 60 и 80оС.

В результате проведения физико-химических исследований эмульсионных систем было установлено, что с повышением температуры наблюдается понижение стабильности изученных эмульсий в несколько раз и при малых концентрациях ПАВ составляет 4-6 ч. При 60-80оС с увеличением концентрации ПАВ в системе стабильность ОЭ увеличивается в 2-4 раза.

Дальнейшие фильтрационные исследования проводится со следующим составом обратной эмульсии, (% объемные): эмульгатор ЭКС-ЭМ – 3, CaCl2, - 3, нефть – 20 и минерализованной (16 г/л) воды - 74.

Оценка фильтрационных и нефтевытесняющих свойств обратных эмульсий на основе эмульгатора ЭКС-ЭМ проводится на насыпных моделях пористых сред длиной 25 см с внутренним диаметром 2 см с учетом проведенных физико-химических исследований. Проницаемость пористой среды в опытах составляет 0,35-0,42 мкм2. В качестве пористой среды используеся дезинтегрированный керн пласта. Подготовка к опытам осуществляется по стандартным методикам.

В ходе проведения опытов определились следующие параметры: пористость, проницаемость, подвижность воды при 100% насыщенности и остаточной нефти, начальная, остаточная и конечная нефтенасыщенность, коэффициент вытеснения нефти водой, изменение подвижности при закачке эмульсии, прирост коэффициента вытеснения нефти, коэффициент изоляции.

Температура проведения опытов составляла 60 и 80оС, объемная скорость фильтрации 40-80 мл/ч (10-20 м/сут), объем закачки эмульсионных систем - 1 V пор, выдержка в пористой среде при температуре опыта 16 ч.

В результате экспериментов получено, что прирост коэффициента нефтевытеснения составляет 0,21 – 0,32.

Коэффициент изоляции (отношение подвижности воды при остаточной нефтенасыщенности к подвижности воды после закачки эмульсии) составил 1,93-2,07 при температуре опытов 80оС и 2,35-2,54 – при 60оС, т. е. изоляционные свойства обратной эмульсии в большей степени проявляются при более низких температурах. Аналогичный вывод справедлив и в отношении прироста коэффициента нефтевытеснения, который изменяется в диапазоне 0,29-0,32 при температуре 60 оС и 0,21-0,25 – при температуре 80 оС.

Это дает основание предположить, что после обработки нагнетательной скважины подобной эмульсионной системой произойдет перераспределение профиля приемистости в результате снижения подвижности воды в более проницаемых пропластках, и подключение низкопроницаемых слоев за счет снижения остаточной нефтенасыщенности и увеличения, за счет этого, подвижности воды.

К примеру, после обработки нагнетательной скважины подобной эмульсионной системой ( (%) : эмульгатор ЭКС-ЭМ - 3; нефть - 20; cacl2 - 3; остальное – вода с минерализацией 16 г/л.) произойдет перераспределение профиля приемистости в результате снижения подвижности воды в более проницаемых пропластках, и подключение низкопроницаемых слоев за счет снижения остаточной нефтенасыщенности и увеличения, за счет этого, подвижности воды.

Механизм действия потокоотклоняющих технологий.

Механизм действия потокоотклоняющих технологий основан на образовании в поровом пространстве промытых пропластков продуктивного коллектора барьеров для вытесняющей нефть воды путем закачки обратных эмульсий на основе эмульгатора ЭКС-ЭМ, жидкого стекла и интенсифицирующих композиций на основе кислот и гидрофобизирующих составов.

-Реализация опытно-промышленных работ на опытном участке Аганского месторождения (объект БВ8) по испытанию комплексной технологии повышения эффективности разработки трудноизвлекаемых запасов была начата 21 июня 2005 г. на основании составленной «Программы работ», учитывающей как время и продолжительность остановок нагнетательных скважин, так и ГТМ на конкретных скважинах.

-Технологическая эффективность от применения комплексной технологии, рассчитанная по методу характеристик вытеснения, оценивается в количестве 25125 т дополнительно добытой нефти, по состоянию на 01.05.07 г.

В ходе реализации комплексной технологии были выполнены обработки 5-ти нагнетательных скважин (№№ 1614, 1618, 1593, 491, 493) обратными эмульсиями на основе эмульгатора ЭКС-ЭМ в целях перераспределения фильтрационных потоков. Объем закачки составлял 100-200 м3 на одну нагнетательную скважину при удельной закачке от 10 до 21,7 м3/м перфорированной толщины. Общий объем закачки обратной эмульсии составил 800 м3.